Show simple item record

dc.contributor.authorBeltrán, Maite T.
dc.contributor.authorRivilla, Víctor M.
dc.contributor.authorCesaroni, Riccardo
dc.contributor.authorMaud, Luke T.
dc.contributor.authorGalli, Daniele
dc.contributor.authorMoscadelli, L.
dc.contributor.authorLorenzani, Andrea
dc.contributor.authorAhmadi, Aida
dc.contributor.authorBeuther, Henrik
dc.contributor.authorCsengeri, Timea
dc.contributor.authorEtoka, Sandra
dc.contributor.authorGoddi, Ciriaco
dc.contributor.authorKlaassen, Pamela D.
dc.contributor.authorKuiper, Rolf
dc.contributor.authorKumar, M. S.Nanda
dc.contributor.authorPeters, Thomas
dc.contributor.authorSanchez-Monge, Alvaro
dc.contributor.authorSchilke, Peter
dc.contributor.authorvan der Tak, Floris F.S.
dc.contributor.authorVig, Sarita
dc.contributor.authorZinnecker, Hans
dc.date.accessioned2021-05-05T03:59:38Z
dc.date.available2021-05-05T03:59:38Z
dc.date.issued2021-04-01
dc.identifier10.1051/0004-6361/202040121
dc.identifier.issn00046361
dc.identifier.urihttps://hdl.handle.net/20.500.12728/8831
dc.description.abstractContext. ALMA observations at 1.4 mm and 0.′′2 (750 au) angular resolution of the Main core in the high-mass star-forming region G31.41+0.31 have revealed a puzzling scenario. On the one hand, the continuum emission looks very homogeneous and the core appears to undergo solid-body rotation, suggesting a monolithic core stabilized by the magnetic field; on the other hand, rotation and infall speed up toward the core center, where two massive embedded free-free continuum sources have been detected, pointing to an unstable core having undergone fragmentation. Aims. To establish whether the Main core is indeed monolithic or if its homogeneous appearance is due to a combination of large dust opacity and low angular resolution, we carried out millimeter observations at higher angular resolution and different wavelengths. Methods. We carried out ALMA observations at 1.4 mm and 3.5 mm that achieved angular resolutions of 0.′′1 (375 au) and 0.′′075 (280 au), respectively. VLA observations at 7 mm and 1.3 cm at even higher angular resolution, 0.′′05 (190 au) and 0.′′07 (260 au), respectively, were also carried out to better study the nature of the free-free continuum sources detected in the core. Results. The millimeter continuum emission of the Main core has been clearly resolved into at least four sources, A, B, C, and D, within 1″, indicating that the core is not monolithic. The deconvolved radii of the dust emission of the sources, estimated at 3.5 mm, are 400-500 au; their masses range from 15 to 26 M; and their number densities are several 109 cm-3. Sources A and B, located closer to the center of the core and separated by 750 au, are clearly associated with two free-free continuum sources, likely thermal radio jets, and are brightest in the core. The spectral energy distribution of these two sources and their masses and sizes are similar and suggest a common origin. Source C has not been detected at centimeter wavelengths, while source D has been clearly detected at 1.3 cm. Source D is likely the driving source of an E-W SiO outflow previously detected in the region, which suggests that the free-free emission might be coming from a radio jet. Conclusions. The observations have confirmed that the Main core in G31 is collapsing, that it has undergone fragmentation, and that its homogeneous appearance previously observed at short wavelengths is a consequence of both high dust opacity and insufficient angular resolution. The low level of fragmentation together with the fact that the core is moderately magnetically supercritical, suggests that G31 could have undergone a phase of magnetically regulated evolution characterized by a reduced fragmentation efficiency, eventually leading to the formation of a small number of relatively massive dense cores.es_ES
dc.language.isoenes_ES
dc.publisherEDP Scienceses_ES
dc.subjectISM: individual objects: G31.41+0.31es_ES
dc.subjectStars: formationes_ES
dc.subjectStars: massivees_ES
dc.subjectTechniques: interferometrices_ES
dc.titleFragmentation in the massive G31.41+0.31 protoclusteres_ES
dc.typeArticlees_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record