Show simple item record

dc.contributor.authorHernández-Juárez, Gerardo
dc.contributor.authorVásquez-Espinal, Alejandro
dc.contributor.authorMurillo, Fernando
dc.contributor.authorQuintal, Alan
dc.contributor.authorOrtíz-Chi, Filiberto
dc.contributor.authorZarate, Ximena
dc.contributor.authorBarroso, Jorge
dc.contributor.authorMerino, Gabriel
dc.date.accessioned2024-04-10T00:46:28Z
dc.date.available2024-04-10T00:46:28Z
dc.date.issued2023
dc.identifier10.1039/d3dt02652c
dc.identifier.issn14779226
dc.identifier.urihttps://hdl.handle.net/20.500.12728/10512
dc.description.abstractThe notion that a regular icosahedron is unattainable in neutral B12H12 has persisted for nearly 70 years. This is because 24 valence electrons are used for B-H bonds, while another 24 electrons are necessary to maintain the deltahedron, unlike the 26 used in the dianion. According to Wade-Mingos rules, the neutral system should be a deltahedron with a capped face. Nevertheless, our exploration of the potential energy surface of B12H12 reveals that the global minimum is a closed-shell form with an H2 unit attached to a boron vertex of B12H10, preserving the deltahedral boron skeleton. © 2023 The Royal Society of Chemistry.es_ES
dc.description.sponsorshipAgenția Națională pentru Cercetare și Dezvoltare, ANCD; Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, (1221019); Consejo Nacional de Ciencia y Tecnología, CONACYT; Agencia Nacional de Investigación y Desarrollo, ANIDes_ES
dc.language.isoenes_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.titleUnveiling the electronic and structural consequences of removing two electrons from B12H122−es_ES
dc.typeArticlees_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record