Universidad Autónoma de Chile
  • Admisión
  • Universidad
  • Vinculación con el Medio
  • Investigación
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Investigación
  • Proyectos
  • Personas
  • Estadísticas
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Investigación y Desarrollo
  3. Publicaciones
  4. Influence of thermodynamically inconsistent data on modeling the solubilities of refrigerants in ionic liquids using an artificial neural network
 
  • Detalles
Options

Influence of thermodynamically inconsistent data on modeling the solubilities of refrigerants in ionic liquids using an artificial neural network

Fecha de emisión
2021-09-01
Autor(es)
Fierro, Elías N.
Faúndez, Claudio Alonso
Muñoz Espinoza, Ariana 
Facultad de Ingeniería 
DOI
10.1016/j.molliq.2021.116417
Resumen
In this work, a general thermodynamic consistency test is applied to analyze phase equilibrium data (PTx) for binary refrigerant and ionic liquid mixtures. The Valderrama-Patel-Teja (VPT) equation of state and the Kwak and Mansoori (KM) mixing rules are employed to correlate the solubility data of several refrigerants in different ionic liquids, and the Gibbs-Duhem equation is employed to check the thermodynamic consistency of six hundred forty-two experimental data points. The main purpose of this work is to analyze the influence of experimental data that are declared thermodynamically inconsistent on modeling the solubilities of refrigerants in ionic liquids using an artificial neural network. The results obtained via the test are classified into three categories: thermodynamically consistent, not fully consistent and thermodynamically inconsistent. Subsequently, a multilayer perceptron is trained to predict solubility in three cases: i) learning with isotherms that are declared thermodynamically consistent; ii) learning with isotherms, including those that are declared thermodynamically consistent and those that are not fully consistent; and iii) learning with all isotherms, even those that are declared thermodynamically inconsistent. For each case, the architecture, input combination and number of parameters necessary to achieve reasonable predictions are determined. The results show that the use of thermodynamically consistent and not fully consistent data is sufficient for finding an artificial neural network with a reasonable number of parameters.
Temas
  • Artificial neural net...

  • Equation of state

  • Ionic liquids

  • Multilayer perceptron...

  • Solubility

  • Thermodynamic consist...

Archivo(s)
Loading...
Thumbnail Image
Download
Name

Influenceofthermodynamicallyinconsistentdataonmodelingthesolubilitiesofrefrigerantsinionicliquidsusinganartificialneuralnetwork.pdf

Size

54.93 KB

Format

Checksum
Contáctanos
  • Comunícate con nosotros

    Ir al formulario
  • Denuncias de convivencia, acoso laboral y sexual

    Ingresa aquí
Sedes y Campus
  • Providencia, Santiago
  • El Llano Subercaseaux, Santiago
  • Talca
  • Temuco
Universidad
  • Acreditación 2024
  • Vicerrectoría Académica
  • Vicerrectoría de Aseguramiento de la Calidad
  • Vicerrectoría de Investigación y Doctorados
  • Vicerrectoría de Vinculación con el Medio
  • Facultades
  • Dirección de Desarrollo y Postgrados
  • Dirección General de Vida Universitaria y Comunicaciones
Comunicaciones corporativas
  • Noticias
  • Eventos
  • Redes sociales
Información y servicios
  • Calendario Académico
  • Clínicas de Atención Psicológica
  • Clínicas Jurídicas y Sociales
  • Institutos de Investigación
  • Centros de Investigación
  • Políticas, Reglamentos y Protocolos
  • Pagos en línea
  • Verificación de Certificados
  • Términos Legales y Condiciones Generales
  • Convenios Recursos Públicos
  • TOP3-UNIV-JOVENES
  • 2DO-CITAS-INVESTIGACION
  • times-high-ed-caluga-web-nueva
  • UNIV-SALUD-PUBLICA
  • TOP10-SCIMAGO
  • CNA
  • AQAS
  • ANECA
  • ADSCRITA

©2024 | Universidad Autónoma de Chile