Universidad Autónoma de Chile
  • Admisión
  • Universidad
  • Vinculación con el Medio
  • Investigación
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Investigación
  • Proyectos
  • Personas
  • Estadísticas
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Investigación y Desarrollo
  3. Publicaciones
  4. Benchmarking federated strategies in Peer-to-Peer Federated learning for biomedical data
 
  • Detalles
Options

Benchmarking federated strategies in Peer-to-Peer Federated learning for biomedical data

Fecha de emisión
2023
Autor(es)
Salmeron, Jose L.
Arévalo, Irina
Ruiz-Celma, Antonio
DOI
10.1016/j.heliyon.2023.e16925
Resumen
The increasing requirements for data protection and privacy have attracted a huge research interest on distributed artificial intelligence and specifically on federated learning, an emerging machine learning approach that allows the construction of a model between several participants who hold their own private data. In the initial proposal of federated learning the architecture was centralised and the aggregation was done with federated averaging, meaning that a central server will orchestrate the federation using the most straightforward averaging strategy. This research is focused on testing different federated strategies in a peer-to-peer environment. The authors propose various aggregation strategies for federated learning, including weighted averaging aggregation, using different factors and strategies based on participant contribution. The strategies are tested with varying data sizes to identify the most robust ones. This research tests the strategies with several biomedical datasets and the results of the experiments show that the accuracy-based weighted average outperforms the classical federated averaging method. © 2023
Temas
  • Federated learning

  • Privacy-preserving ma...

Archivo(s)
Loading...
Thumbnail Image
Download
Name

PIIS2405844023041324.pdf

Size

779.95 KB

Format

Checksum
Contáctanos
  • Comunícate con nosotros

    Ir al formulario
  • Denuncias de convivencia, acoso laboral y sexual

    Ingresa aquí
Sedes y Campus
  • Providencia, Santiago
  • El Llano Subercaseaux, Santiago
  • Talca
  • Temuco
Universidad
  • Acreditación 2024
  • Vicerrectoría Académica
  • Vicerrectoría de Aseguramiento de la Calidad
  • Vicerrectoría de Investigación y Doctorados
  • Vicerrectoría de Vinculación con el Medio
  • Facultades
  • Dirección de Desarrollo y Postgrados
  • Dirección General de Vida Universitaria y Comunicaciones
Comunicaciones corporativas
  • Noticias
  • Eventos
  • Redes sociales
Información y servicios
  • Calendario Académico
  • Clínicas de Atención Psicológica
  • Clínicas Jurídicas y Sociales
  • Institutos de Investigación
  • Centros de Investigación
  • Políticas, Reglamentos y Protocolos
  • Pagos en línea
  • Verificación de Certificados
  • Términos Legales y Condiciones Generales
  • Convenios Recursos Públicos
  • TOP3-UNIV-JOVENES
  • 2DO-CITAS-INVESTIGACION
  • times-high-ed-caluga-web-nueva
  • UNIV-SALUD-PUBLICA
  • TOP10-SCIMAGO
  • CNA
  • AQAS
  • ANECA
  • ADSCRITA

©2024 | Universidad Autónoma de Chile