Universidad Autónoma de Chile
  • Admisión
  • Universidad
  • Vinculación con el Medio
  • Investigación
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Investigación
  • Proyectos
  • Personas
  • Estadísticas
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Investigación y Desarrollo
  3. Publicaciones
  4. Use of the Wii Balance Board as a mechanism for recognition and classification of the risk of falls in older adults
 
  • Detalles
Options

Use of the Wii Balance Board as a mechanism for recognition and classification of the risk of falls in older adults

Fecha de emisión
2023
Autor(es)
Arias-Poblete, Leónidas
Álvarez‐Arangua, Sebastián
Pezo-Mora, Catalina
Jerez-Mayorga, Daniel
Donoso, Matías Orellana
Ferrero-Hernández, Paloma
Ferrari, Gerson
Farías‐ Valenzuela, Claudio
DOI
10.6018/sportk.571561
Resumen
Introduction: In clinical practice, the functional tests used to assess the risk of falls require precision techniques and elements that avoid subjectivity. The use of the Wii Balance Board (WBB) is an alternative to the above, since it is an inexpensive, portable tool that allows extracting variables that are related to the phenomenon under study. Objective: To classify the variables derived from the center of pressure (CoP) during the evaluation of postural control through the WBB, in older adults with and without risk of falls. Methods: A descriptive research design was used. A total of 40 older adults were studied, 20 with and 20 without risk of falls. Postural control was evaluated using the WBB, extracting kinetic and kinematic variables, which allowed the implementation of an attribute selector and the SVM algorithm (SVMs, Support Vector Machines), identifying older adults at risk of falls. Results: The variables that best allow us to classify older adults with and without risk of falling were speed, displacement and mean force. A two-class classifier was built, whose best performance was the Kappa index 0.95 (almost perfect agreement strength), 98% sensitivity, and 100% specificity. Conclusions: The use of WBB can be considered a low-cost alternative for the evaluation of the risk of falls in older adults. © Copyright 2023.
Temas
  • Balance

  • Older adult

  • Risk of falls

  • Support Vector Machin...

Archivo(s)
Loading...
Thumbnail Image
Download
Name

gfls3.pdf

Size

671.86 KB

Format

Checksum
Contáctanos
  • Comunícate con nosotros

    Ir al formulario
  • Denuncias de convivencia, acoso laboral y sexual

    Ingresa aquí
Sedes y Campus
  • Providencia, Santiago
  • El Llano Subercaseaux, Santiago
  • Talca
  • Temuco
Universidad
  • Acreditación 2024
  • Vicerrectoría Académica
  • Vicerrectoría de Aseguramiento de la Calidad
  • Vicerrectoría de Investigación y Doctorados
  • Vicerrectoría de Vinculación con el Medio
  • Facultades
  • Dirección de Desarrollo y Postgrados
  • Dirección General de Vida Universitaria y Comunicaciones
Comunicaciones corporativas
  • Noticias
  • Eventos
  • Redes sociales
Información y servicios
  • Calendario Académico
  • Clínicas de Atención Psicológica
  • Clínicas Jurídicas y Sociales
  • Institutos de Investigación
  • Centros de Investigación
  • Políticas, Reglamentos y Protocolos
  • Pagos en línea
  • Verificación de Certificados
  • Términos Legales y Condiciones Generales
  • Convenios Recursos Públicos
  • TOP3-UNIV-JOVENES
  • 2DO-CITAS-INVESTIGACION
  • times-high-ed-caluga-web-nueva
  • UNIV-SALUD-PUBLICA
  • TOP10-SCIMAGO
  • CNA
  • AQAS
  • ANECA
  • ADSCRITA

©2024 | Universidad Autónoma de Chile