Universidad Autónoma de Chile
  • Admisión
  • Universidad
  • Vinculación con el Medio
  • Investigación
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Investigación
  • Proyectos
  • Personas
  • Estadísticas
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Investigación y Desarrollo
  3. Publicaciones ANID
  4. Application of a Single Multilayer Perceptron Model to Predict the Solubility of CO2 in Different Ionic Liquids for Gas Removal Processes
 
  • Detalles
Options

Application of a Single Multilayer Perceptron Model to Predict the Solubility of CO2 in Different Ionic Liquids for Gas Removal Processes

Fecha de emisión
2022
Autor(es)
Fierro, Elías N.
Faúndez, Claudio A.
Muñoz Espinoza, Ariana 
Facultad de Ingeniería 
Cerda, Patricio I.
DOI
10.3390/pr10091686
Resumen
In this work, 2099 experimental data of binary systems composed of CO2 and ionic liquids are studied to predict solubility using a multilayer perceptron. The dataset includes 33 different types of ionic liquids over a wide range of temperatures, pressures, and solubilities. The main objective of this work is to propose a procedure for the prediction of CO2 solubility in ionic liquids by establishing four stages to determine the model parameters: (1) selection of the learning algorithm, (2) optimization of the first hidden layer, (3) optimization of the second hidden layer, and (4) selection of the input combination. In this study, a bound is set on the number of model parameters: the number of model parameters must be less than the amount of predicted data. Eight different learning algorithms with (4,m,n,1)-type hidden two-layer architectures (m = 2, 4, …, 10 and n = 2, 3, …, 10) are studied, and the artificial neural network is trained with three input combinations with three combinations of thermodynamic variables such as temperature (T), pressure (P), critical temperature (Tc), critical pressure, the critical compressibility factor (Zc), and the acentric factor (ω). The results show that the 4-6-8-1 architecture with the input combination T-P-Tc-Pc and the Levenberg–Marquard learning algorithm is a very acceptable and simple model (95 parameters) with the best prediction and a maximum absolute deviation close to 10%. © 2022 by the authors.
Temas
  • algorithm learning

  • artificial neural net...

  • CO<sub>2</sub>

  • ionic liquids

  • Levenberg–Marquard al...

  • multilayer perceptron...

  • solubility

Archivo(s)
Loading...
Thumbnail Image
Download
Name

processes1001686.pdf

Size

2.83 MB

Format

Checksum
Contáctanos
  • Comunícate con nosotros

    Ir al formulario
  • Denuncias de convivencia, acoso laboral y sexual

    Ingresa aquí
Sedes y Campus
  • Providencia, Santiago
  • El Llano Subercaseaux, Santiago
  • Talca
  • Temuco
Universidad
  • Acreditación 2024
  • Vicerrectoría Académica
  • Vicerrectoría de Aseguramiento de la Calidad
  • Vicerrectoría de Investigación y Doctorados
  • Vicerrectoría de Vinculación con el Medio
  • Facultades
  • Dirección de Desarrollo y Postgrados
  • Dirección General de Vida Universitaria y Comunicaciones
Comunicaciones corporativas
  • Noticias
  • Eventos
  • Redes sociales
Información y servicios
  • Calendario Académico
  • Clínicas de Atención Psicológica
  • Clínicas Jurídicas y Sociales
  • Institutos de Investigación
  • Centros de Investigación
  • Políticas, Reglamentos y Protocolos
  • Pagos en línea
  • Verificación de Certificados
  • Términos Legales y Condiciones Generales
  • Convenios Recursos Públicos
  • TOP3-UNIV-JOVENES
  • 2DO-CITAS-INVESTIGACION
  • times-high-ed-caluga-web-nueva
  • UNIV-SALUD-PUBLICA
  • TOP10-SCIMAGO
  • CNA
  • AQAS
  • ANECA
  • ADSCRITA

©2024 | Universidad Autónoma de Chile