Universidad Autónoma de Chile
  • Admisión
  • Universidad
  • Vinculación con el Medio
  • Investigación
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Investigación
  • Proyectos
  • Personas
  • Estadísticas
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Investigación y Desarrollo
  3. Publicaciones
  4. Reducing the overfitting in the gROC curve estimation
 
  • Detalles
Options

Reducing the overfitting in the gROC curve estimation

Fecha de emisión
2024
Autor(es)
Martínez-Camblor, Pablo
Díaz-Coto, Susana
DOI
10.1007/s00180-023-01344-6
Resumen
The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subsets among those satisfying particular condition. Both strong and weak consistency have already been proved. However, using the same data for both to select the classification subsets and to calculate its gROC curve leads to an over-optimistic estimate of the real performance of the diagnostic criteria on future samples. In this work, the bias of the empirical gROC curve estimator is explored through Monte Carlo simulations. Besides, two cross-validation based algorithms are proposed for reducing the overfitting. The practical application of the proposed algorithms is illustrated through the analysis of a real-world dataset. Simulation results suggest that the empirical gROC curve estimator returns optimistic approximations, especially, in situations in which the diagnostic capacity of the marker is poor and the sample size is small. The new proposed algorithms improve the estimation of the actual diagnostic test accuracy, and get almost unbiased gAUCs in most of the considered scenarios. However, the cross-validation based algorithms reported larger L1-errors than the standard empirical estimators, and increment the computational cost of the procedures. As online supplementary material, this manuscript includes an R function which wraps up the implemented routines. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Temas
  • Binary classification...

  • Cross-validation

  • Diagnostic problem

  • gROC curve

  • Overfitting

Contáctanos
  • Comunícate con nosotros

    Ir al formulario
  • Denuncias de convivencia, acoso laboral y sexual

    Ingresa aquí
Sedes y Campus
  • Providencia, Santiago
  • El Llano Subercaseaux, Santiago
  • Talca
  • Temuco
Universidad
  • Acreditación 2024
  • Vicerrectoría Académica
  • Vicerrectoría de Aseguramiento de la Calidad
  • Vicerrectoría de Investigación y Doctorados
  • Vicerrectoría de Vinculación con el Medio
  • Facultades
  • Dirección de Desarrollo y Postgrados
  • Dirección General de Vida Universitaria y Comunicaciones
Comunicaciones corporativas
  • Noticias
  • Eventos
  • Redes sociales
Información y servicios
  • Calendario Académico
  • Clínicas de Atención Psicológica
  • Clínicas Jurídicas y Sociales
  • Institutos de Investigación
  • Centros de Investigación
  • Políticas, Reglamentos y Protocolos
  • Pagos en línea
  • Verificación de Certificados
  • Términos Legales y Condiciones Generales
  • Convenios Recursos Públicos
  • TOP3-UNIV-JOVENES
  • 2DO-CITAS-INVESTIGACION
  • times-high-ed-caluga-web-nueva
  • UNIV-SALUD-PUBLICA
  • TOP10-SCIMAGO
  • CNA
  • AQAS
  • ANECA
  • ADSCRITA

©2024 | Universidad Autónoma de Chile