Options
Denis, Otoniel

An unbiased NOEMA 2.6 to 4 mm survey of the GG Tau ring: First detection of CCS in a protoplanetary disk
2021-09-01, Phuong, Nguyen Thi, Dutrey, Anne, Chapillon, Edwige, Guilloteau, Stéphane, Bary, Jeffrey S., Beck, Tracy L., Coutens, Audrey, Denis, Otoniel, Di Folco, Emmanueli, Diep, Pham Ngoc, Majumdar, Liton, Melisse, J. P.
Context. Molecular line surveys are among the main tools to probe the structure and physical conditions in protoplanetary disks (PPDs), the birthplace of planets. The large radial and vertical temperature as well as density gradients in these PPDs lead to a complex chemical composition, making chemistry an important step to understand the variety of planetary systems. Aims. We aimed to study the chemical content of the protoplanetary disk surrounding GG Tau A, a well-known triple T Tauri system. Methods. We used NOEMA with the new correlator PolyFix to observe rotational lines at ∼2.6 to 4 mm from a few dozen molecules. We analysed the data with a radiative transfer code to derive molecular densities and the abundance relative to 13CO, which we compare to those of the TMC1 cloud and LkCa 15 disk. Results. We report the first detection of CCS in PPDs. We also marginally detect OCS and find 16 other molecules in the GG Tauri outer disk. Ten of them had been found previously, while seven others (13CN, N2H+, HNC, DNC, HC3N, CCS, and C34S) are new detections in this disk. Conclusions. The analysis confirms that sulphur chemistry is not yet properly understood. The D/H ratio, derived from DCO+/HCO+, DCN/HCN, and DNC/HNC ratios, points towards a low temperature chemistry. The detection of the rare species CCS confirms that GG Tau is a good laboratory to study the protoplanetary disk chemistry, thanks to its large disk size and mass.
Deexcitation rate coefficients of C3by collision with H2at low temperatures
2022-06-01, Santander, Carlos, Denis, Otoniel, Cárdenas, Carlos
Context. An accurate analysis of the physical-chemical conditions in the regions of the interstellar medium in which C3 is observed requires knowing the collisional rate coefficients of this molecule with He, H2, electrons, and H. Aims. The main goals of this study are to present the first potential energy surface for the C3 +H2 complex, to study the dynamics of the system, and to report a set of rate coefficients at low temperature for the lower rotational states of C3 with para- and ortho-H2. Methods. A large grid of ab initio energies was computed at the explicitly correlated coupled-cluster with single-, double-, and perturbative triple-excitation level of theory, together with the augmented correlation-consistent quadruple zeta basis set (CCSD(T)-F12a/aug-cc-pVQZ). This grid of energies was fit to an analytical function. The potential energy surface was employed in close-coupling calculations at low collisional energies. Results. We present a high-level four-dimensional potential energy surface (PES) for studying the collision of C3 with H2. The global minimum of the surface is found in the linear HH-CCC configuration. Rotational deexcitation state-to-state cross sections of C3 by collision with para- and ortho-H2 are computed. Furthermore, a reduced two-dimensional surface is developed by averaging the surface over the orientation of H2. The cross sections for the collision with para-H2 using this approximation and those from the four-dimensional PES agree excellently. Finally, a set of rotational rate coefficients for the collision of C3 with para- and ortho-H2 at low temperatures are reported.
Rotational relaxation of HCO+and DCO+by collision with H2
2020-10-01, Denis, Otoniel, Stoecklin, Thierry S., Dutrey, Anne, Guilloteau, Stéphane
The HCO+ and DCO+ molecules are commonly used as tracers in the interstellar medium. Therefore, accurate rotational rate coefficients of these systems with He and H2 are crucial in non-local thermal equilibrium models. We determine in this work the rotational de-excitation rate coefficients of HCO+ in collision with both para- and ortho-H2, and also analyse the isotopic effects by studying the case of DCO+. A new four-dimensional potential energy surface from ab initio calculations was developed for the HCO+-H2 system, and adapted to the DCO+-H2 case. These surfaces are then employed in close-coupling calculations to determine the rotational de-excitation cross-sections and rate coefficients for the lower rotational states of HCO+ and DCO+. The new rate coefficients for HCO+ + para-H2 were compared with the available data, and a set of rate coefficients for HCO+ + ortho-H2 is also reported. The difference between the collision rates with ortho- and para-H2 is found to be small. These calculations confirm that the use of the rate coefficients for HCO+ + para-H2 for estimating those for HCO+ + ortho-H2 as well as for DCO+ + para-H2 is a good approximation.
Rotational Relaxation of AlNC and AlCN by para-H2(j = 0) at Low Temperatures
2020-12-08, Urzúa-Leiva, Rodrigo A., Denis, Otoniel
An accurate determination of the abundances of metal-containing molecules in the interstellar medium or circumstellar gas requires knowledge of molecular data, including the collisional rate coefficients. This work is focused on the study of the collision of the aluminum isocyanide (AlNC) molecule, as well as its isomer AlCN, with para-H2 (j = 0). For the AlNC + H2 and AlCN + H2 complexes, averaged potential energy surfaces are developed from ab initio energies computed at the coupled cluster with the single, double, and perturbative triple excitation level of theory. Such surfaces are used in close-coupling calculations. The rate coefficients at low temperature are compared with those for the collisions with He. The use of the mass scaling procedure is a good approximation in the case of AlCN. However, for the collision with AlNC, a different propensity rule is found between the rates with He and para-H2 (j = 0). Finally, rotational rate coefficients for the lowest 26 rotational levels of both molecules, AlCN and AlNC, by collision with para-H2 (j = 0) are reported.