Options
Nuñez Montero, Kattia
Loading...
Nombre preferido
Nuñez Montero, Kattia
Nombre oficial
Kattia Nuñez Montero
Afiliación principal
2 results
Now showing 1 - 2 of 2
- PublicationExploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications(2024)
;Rojas-Villalta, Dorian ;Rojas-Rodríguez, David ;Villanueva-Ilama, Melany ;Guillén-Watson, Rossy ;Murillo-Vega, Francinie; Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology. - PublicationUnlocking Fungal Potential: The CRISPR-Cas System as a Strategy for Secondary Metabolite Discovery(2024-11)
; ;Rojas, Edwind ;Madariaga, David ;Contreras, María José; ; ; Iturrieta-González, IsabelNatural products (NPs) are crucial for the development of novel antibiotics, anticancer agents, and immunosuppressants. To highlight the ability of fungi to produce structurally diverse NPs, this article focuses on the impact of genome mining and CRISPR-Cas9 technology in uncovering and manipulating the biosynthetic gene clusters (BGCs) responsible for NP synthesis. The CRISPR-Cas9 system, originally identified as a bacterial adaptive immune mechanism, has been adapted for precise genome editing in fungi, enabling targeted modifications, such as gene deletions, insertions, and transcription modulation, without altering the genomic sequence. This review elaborates on various CRISPR-Cas9 systems used in fungi, notably the Streptococcus pyogenes type II Cas9 system, and explores advancements in different Cas proteins for fungal genome editing. This review discusses the methodologies employed in CRISPR-Cas9 genome editing of fungi, including guide RNA design, delivery methods, and verification of edited strains. The application of CRISPR-Cas9 has led to enhanced production of secondary metabolites in filamentous fungi, showcasing the potential of this system in biotechnology, medical mycology, and plant pathology. Moreover, this article emphasizes the integration of multi-omics data (genomics, transcriptomics, proteomics, and metabolomics) to validate CRISPR-Cas9 editing effects in fungi. This comprehensive approach aids in understanding molecular changes, identifying off-target effects, and optimizing the editing protocols. Statistical and machine learning techniques are also crucial for analyzing multi-omics data, enabling the development of predictive models and identification of key molecular pathways affected by CRISPR-Cas9 editing. In conclusion, CRISPR-Cas9 technology is a powerful tool for exploring fungal NPs with the potential to accelerate the discovery of novel bioactive compounds. The integration of CRISPR-Cas9 with multi-omics approaches significantly enhances our ability to understand and manipulate fungal genomes for the production of valuable secondary metabolites and for promising new applications in medicine and industry.