Now showing 1 - 5 of 5
  • Publication
    The emerging role of piwi-interacting rnas (Pirnas) in gastrointestinal cancers: An updated perspective
    (MDPI, 2022) ;
    Pérez-Moreno, Pablo
    ;
    Letelier, Pablo
    ;
    Brebi, Priscilla
    ;
    Roa, Juan Carlos
    Gastrointestinal (GI) cancers produce ~3.4 million related deaths worldwide, comprising 35% of all cancer-related deaths. The high mortality among GI cancers is due to late diagnosis, the presence of metastasis and drug resistance development. Additionally, current clinical markers do not adequately guide patient management, thereby new and more reliable biomarkers and therapeutic targets are still needed for these diseases. RNA-seq technology has allowed the discovery of new types of RNA transcripts including PIWI-interacting RNAs (piRNAs), which have particular characteristics that enable these molecules to act via diverse molecular mechanisms for regulating gene expression. Cumulative evidence has described the potential role of piRNAs in the development of several tumor types as a likely explanation for certain genomic abnormalities and signaling pathways’ deregulations observed in cancer. In addition, these piRNAs might be also proposed as promising diagnostic or prognostic biomarkers or as potential therapeutic targets in malignancies. This review describes important topics about piRNAs including their molecular characteristics, biosynthesis processes, gene expression silencing mechanisms, and the manner in which these transcripts have been studied in samples and cell lines of GI cancers to elucidate their implications in these diseases. Moreover, this article discusses the potential clinical usefulness of piRNAs as biomarkers and therapeutic targets in GI cancers. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Publication
    Long Non-Coding RNAs (lncRNAs) as Regulators of the PI3K/AKT/mTOR Pathway in Gastric Carcinoma
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023) ;
    Pérez-Moreno, Pablo
    ;
    Mora-Lagos, Bárbara
    ;
    Ili, Carmen
    ;
    Brebi, Priscilla
    ;
    Roa, Juan Carlos
    Gastric cancer (GC) represents ~10% of the global cancer-related deaths, increasingly affecting the younger population in active stages of life. The high mortality of GC is due to late diagnosis, the presence of metastasis and drug resistance development. Additionally, current clinical markers do not guide the patient management adequately, thereby new and more reliable biomarkers and therapeutic targets are still needed for this disease. RNA-seq technology has allowed the discovery of new types of RNA transcripts including long non-coding RNAs (lncRNAs), which are able to regulate the gene/protein expression of many signaling pathways (e.g., the PI3K/AKT/mTOR pathway) in cancer cells by diverse molecular mechanisms. In addition, these lncRNAs might also be proposed as promising diagnostic or prognostic biomarkers or as potential therapeutic targets in GC. This review describes important topics about some lncRNAs that have been described as regulators of the PI3K/AKT/mTOR signaling pathway, and hence, their potential oncogenic role in the development of this malignancy. © 2023 by the authors.
  • Publication
    The ERK/MAPK pathway is overexpressed and activated in gallbladder cancer
    (Pathology – Research and Practice, 2017-05)
    Buchegger, Kurt
    ;
    Silva, Ramón
    ;
    Lopez, Jaime
    ;
    Ili, Carmen
    ;
    Araya, Juan Carlos
    ;
    Leal, Pamela
    ;
    Brebi, Priscilla
    ;
    ;
    Roa, Juan Carlos
    Gallbladder cancer (GBC) is a highly fatal disease with poor prognosis and few therapeutic alternatives. Molecular profiling has revealed that the deregulation in the ERK/MAPK signaling pathway plays a crucial role in many disease and malignancies, including GBC. The aim of this study was to measure the expression of ERK1/2 and p-ERK1/2 in a population with high GBC-related mortality, such as the Chilean population, and characterize the protein expression of this ERK/MAPK pathway in seven GBC cell lines. Immunohistochemistry (IHC) for ERK1/2 and p-ERK1/2 was performed in 123 GBC tissues and 37 chronic cholecystitis (CC) tissues. In addition, protein expression analysis by western blot for ERK1/2, p-ERK1/2, EGFR, ERBB2 and ERBB3 were performed in seven GBC cell lines (GB-d1, G415, NOZ, OCUG-1, TGBC-1, TGBC-2 and TGBC-24). A higher ERK1/2 and p-ERK1/2 expression was found in GBC tissues compared to chronic cholecystitis (CC) tissues (P < 0.001). However, neither significant differences in overall survival nor significant associations with any of the clinicopathological features were found by comparing low and high expression of both ERK1/2 and p-ERK1/2. Western blot analysis of seven GBC cell lines showed that, in general, GB-d1, G415 and NOZ cells evidenced a strong expression of ERK1/2, p-ERK1/2, EGFR, ERBB2 and ERBB3. Therefore, ERK1/2 and p-ERK1/2 seem to be important in the development of GBC and GB-d1, G415 and NOZ cell lines may be used as experimental models for further in vitro and in vivo studies that help to decipher the role of MAPK/ERK pathway in gallbladder carcinogenesis.
  • Publication
    Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer
    (MDPI, 2022)
    Pérez-Moreno, Pablo
    ;
    ;
    García, Patricia
    ;
    Brebi, Priscilla
    ;
    Roa, Juan Carlos
    Gallbladder cancer (GBC) is an aggressive neoplasm that in an early stage is generally asymptomatic and, in most cases, is diagnosed in advanced stages with a very low life expectancy because there is no curative treatment. Therefore, understanding the early carcinogenic mechanisms of this pathology is crucial to proposing preventive strategies for this cancer. The main risk factor is the presence of gallstones, which are associated with some environmental factors such as a sedentary lifestyle and a high-fat diet. Other risk factors such as autoimmune disorders and bacterial, parasitic and fungal infections have also been described. All these factors can generate a long-term inflammatory state characterized by the persistent activation of the immune system, the frequent release of pro-inflammatory cytokines, and the constant production of reactive oxygen species that result in a chronic damage/repair cycle, subsequently inducing the loss of the normal architecture of the gallbladder mucosa that leads to the development of GBC. This review addresses how the different risk factors could promote a chronic inflammatory state essential to the development of gallbladder carcinogenesis, which will make it possible to define some strategies such as anti-inflammatory drugs or public health proposals in the prevention of GBC. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
  • Publication
    Epigallocatechin gallate enhances MAL-PDT cytotoxic effect on PDT-resistant skin cancer squamous cells
    (International journal of molecular sciences, 2020-01)
    León, Daniela
    ;
    Buchegger, Kurt
    ;
    Silva, Ramón
    ;
    ;
    Viscarra, Tamara
    ;
    Mora-Lagos, Bárbara
    ;
    Zanella, Louise
    ;
    Schafer, Fabiola
    ;
    Kurachi, Cristina
    ;
    Roa, Juan Carlos
    ;
    Ili, Carmen
    Photodynamic therapy (PDT) has been used to treat certain types of non-melanoma skin cancer with promising results. However, some skin lesions have not fully responded to this treatment, suggesting a potential PDT-resistant phenotype. Therefore, novel therapeutic alternatives must be identified that improve PDT in resistant skin cancer. In this study, we analyzed the cell viability, intracellular protoporphyrin IX (PpIX) content and subcellular localization, proliferation profile, cell death, reactive oxygen species (ROS) detection and relative gene expression in PDT-resistant HSC-1 cells. PDT-resistant HSC-1 cells show a low quantity of protoporphyrin IX and low levels of ROS, and thus a low rate of death cell. Furthermore, the resistant phenotype showed a downregulation of HSPB1, SLC15A2, FECH, SOD2 and an upregulation of HMBS and BIRC5 genes. On the other hand, epigallocatechin gallate catechin enhanced the MAL-PDT effect, increasing levels of protoporphyrin IX and ROS, and killing 100% of resistant cells. The resistant MAL-PDT model of skin cancer squamous cells (HSC-1) is a reliable and useful tool to understand PDT cytotoxicity and cellular response. These resistant cells were successfully sensitized with epigallocatechin gallate catechin. The in vitro epigallocatechin gallate catechin effect as an enhancer of MAL-PDT in resistant cells is promising in the treatment of difficult skin cancer lesions.