Options
Correa Araneda, Francisco
Loading...

Nombre preferido
Correa Araneda, Francisco
Nombre oficial
Francisco Javier Correa Araneda
Afiliación principal
4 results
Now showing 1 - 4 of 4
- PublicationAgricultural impacts on lowland tropical streams detected through leaf litter decomposition(Elsevier B.V., 2023)
;Pérez, Javier ;Boyero, Luz ;Raquel Tuñón, Ana ;Checa, Brenda; ;Guerra, Alisson ;Tuñón, Anyi ;Castillo, Dania ;Pérez, Edgar ;García, Gabriela ;Rodríguez, RandhyCornejo, AydeéStream ecosystems are highly vulnerable to changes in land use and vegetation in their catchments for two reasons: firstly, they receive inputs of nutrients, contaminants and sediments through runoff; and secondly, terrestrial leaf litter is the major basal resource supporting their food webs. Leaf litter decomposition by microorganisms and detritivores is thus a key stream ecosystem process, and a valuable functional indicator of impacts associated to agriculture and other alterations of human origin. Here, we investigated the joint effects of land use changes associated to agriculture (low, medium and high intervention areas: LI, MI and HI, respectively) in a tropical lowland catchment in Panama, through a decomposition experiment using three leaf litter types differing in nativeness (Ficus insipida, native to the study area; Alnus acuminata, native to Panama but not present in the study area; and Musa balbisiana, exotic to Panama). Lowland tropical areas are often poor in litter-consuming detritivores, and we accordingly observed a high contribution of microorganisms to total decomposition (>60% on average). However, only in the presence of detritivores, decomposition of Alnus discriminated among different degrees of agricultural intervention, being higher at the LI area. Leaf litter of the native Ficus showed higher microbial decomposition than the other types, possibly in relation to a home-field advantage effect. Despite the scarcity of detritivores in tropical lowland streams compared to tropical highland or temperate streams, our study indicates that their activity reflects impacts of land use change on these streams and they should therefore be included in assessments of anthropogenic impacts. © 2023 The Author(s) - PublicationWildfires alter stream ecosystem functioning through effects on leaf litter(Springer Science and Business Media Deutschland GmbH, 2024)
;Pérez, Javier ;Brand, Cecilia ;Alonso, Alberto ;Sarasa, Alaia ;Rojo, Diana; Boyero, LuzBackground: Wildfires have strong impacts on terrestrial and aquatic ecosystems, whose frequency, severity, and intensity are increasing with climate change. Moreover, the expansion of exotic monoculture plantations, such as those of eucalypts, increases this risk. When wildfires do not cause the disappearance of riparian vegetation, they still imply the fall of leaf litter exposed to the fire (i.e., crown scorch), which consequences for ecosystems are unknown. Experimental design: To explore how these leaf litter inputs may affect stream ecosystem functioning, we conducted a microcosm experiment where we quantified the decomposition of leaf litter from three tree species (alder, oak, and eucalypt) under two conditions (control litter simulating natural entries and litter subjected to 150 °C for 3 h mimicking exposure to fire). We also examined the interaction between this factor and a temperature rise (which is often associated to the loss of riparian vegetation caused by the wildfire) by manipulating water temperature (10, 12.5, and 15 °C). Finally, we explored the effects of these variables on the growth of a common detritivore, the caddisfly Sericostoma pyrenaicum. Results: Control alder presented the highest decomposition rates, which were notably reduced due to fire exposure. On the contrary, eucalypt litter decomposition was even slower than that of oak and hardly showed any effect derived from fire exposure. The different leaf litter types determined detritivore growth, to a greater extent than variation related to warming, which generally had negligible effects. Conclusions: Our study shows the negative effects of wildfires on stream ecosystem functioning even when they only involve brief exposure of leaf litter to the fire. Effects are greater on the most palatable native species, which represents the highest quality input in streams of the study area. Our results highlight the importance of protecting riparian forests, especially those composed of native species, against wildfires. © The Author(s) 2024. - PublicationWarming overrides eutrophication effects on leaf litter decomposition in stream microcosms(Elsevier Ltd, 2023)
;Pérez, Javier ;Cornejo, Aydeé ;Alonso, Alberto ;Guerra, Alisson ;García, Gabriela ;Nieto, Carlos; ;Rojo, DianaBoyero, LuzSeveral human activities often result in increased nitrogen (N) and phosphorus (P) inputs to running waters through runoff. Although headwater streams are less frequently affected by these inputs than downstream reaches, the joint effects of moderate eutrophication and global warming can affect the functioning of these ecosystems, which represent two thirds of total river length and thus are of major global relevance. In a microcosm study representing streams from a temperate area (northern Spain), we assessed the combined effects of increased water temperature (10.0, 12.5, and 15.0 °C) and nutrient enrichment (control, high N, high P, and high N + P concentrations) on the key process of leaf litter decomposition (mediated by microorganisms and detritivores) and associated changes in different biological compartments (leaf litter, aquatic hyphomycetes and detritivores). While warming consistently enhanced decomposition rates and associated variables (leaf litter microbial conditioning, aquatic hyphomycete sporulation rate and taxon richness, and detritivore growth and nutrient contents), effects of eutrophication were weaker and more variable: P addition inhibited decomposition, addition of N + P promoted leaf litter conditioning, and detritivore stoichiometry was affected by the addition of both nutrients separately or together. In only a few cases (variables related to detritivore performance, but not microbial performance or leaf litter decomposition) we found interactions between warming and eutrophication, which contrasts with other experiments reporting synergistic effects. Our results suggest that both stressors can importantly alter the functioning of stream ecosystems even when occurring in isolation, although non-additive effects should not be neglected and might require exploring an array of ecosystem processes (not just leaf litter decomposition) in order to be detected. © 2023 The Authors - PublicationHigh sensitivity of invertebrate detritivores from tropical streams to different pesticides(Academic Press, 2021-06-15)
;Cornejo, Aydeé ;Encina-Montoya, Francisco; ;Rovira, Dalys ;García, Gabriela ;Nieto, Carlos ;Villarreal, Víctor ;Jaramillo, Nicomedes ;Pérez, Edgar ;Valderrama, Anayansí ;Pérez, JavierBoyero, LuzFreshwater organisms are often sensitive to pesticides, but their sensitivity varies across different taxa and with pesticide type and action mode, as shown by multiple acute toxicity tests. Such variability hampers predictions about how freshwater ecosystems may be altered by pesticide toxicity, which is especially critical for understudied areas of the world such as the tropics. Furthermore, there is little information about the sensitivity of some organisms that are key components of stream food webs; this is the case of litter-feeding detritivorous invertebrates, which contribute to the fundamental process of litter decomposition. Here, we examined the sensitivity of three common detritivores [Anchytarsus sp. (Coleoptera: Ptilodactylidae), Hyalella sp. (Amphipoda: Hyalellidae) and Lepidostoma sp. (Trichoptera: Lepidostomatidae)] to three pesticides commonly used (the insecticides bifenthrin and chlorpyrifos and the fungicide chlorothalonil) using acute (48 or 96 h) toxicity tests. Our study demonstrates that common-use pesticides provoke the mortality of half their populations at concentrations of 0.04–2.7 μg L-1. We found that all species were sensitive to the three pesticides, with the highest sensitivity found for chlorpyrifos. Additionally, we used the approach of species sensitivity distributions (SSD) to compare our study species with Daphnia magna and other temperate and tropical invertebrates. We found that the study species were among the most sensitive species to chlorpyrifos and chlorothalonil. Our results suggest that tropical detritivores merit special attention in ecological risk assessment of pesticides and highlight the need for accurate ecotoxicological information from ecologically relevant species in the tropics.