Mostrar el registro sencillo del ítem

dc.contributor.authorRusanov A.L.
dc.contributor.authorLuzgina N.G.
dc.contributor.authorBarreto G.E.
dc.contributor.authorAliev G.
dc.date.accessioned2020-09-02T22:27:35Z
dc.date.available2020-09-02T22:27:35Z
dc.date.issued2016
dc.identifier10.2174/1871527315666160202125304
dc.identifier.citation15, 3, 301-309
dc.identifier.issn18715273
dc.identifier.urihttps://hdl.handle.net/20.500.12728/6124
dc.descriptionIn vitro modeling of the human blood-brain barrier (BBB) is critical for pre-clinical evaluation and predicting the permeability of newly developed potentially neurotoxic and neurotrophic drugs. Here we summarize the specific structural and functional features of endothelial cells as a key component of the BBB and compare analysis of different cell culture models in reflecting these features. Particular attention is paid to cellular models of the BBB in microfluidic devices capable of circulating nutrient media to simulate the blood flow of the brain. In these conditions, it is possible to reproduce a number of factors affecting endothelial cells under physiological conditions, including shear stress. In comparison with static cell models, concentration gradients, which determine the velocity of transport of substances, reproduce more accurately conditions of nutrient medium flow, since they eliminate the accumulation of substances near the basal membrane of cells, not typical for the situation in vivo. Co-cultivation of different types of cells forming the BBB, in separate cell chambers connected by microchannels, allows to evaluate the mutual influences of cells under normal conditions and when exposed to the test substance. New experimental possibilities that can be achieved through modeling of BBB in microfluidic devices determine the feasibility of their use in the practice for pre-clinical studies of novel drugs against neurodegenerative diseases. © 2016 Bentham Science Publishers.
dc.language.isoen
dc.publisherBentham Science Publishers
dc.subjectBlood-brain barrier
dc.subjectDrug development
dc.subjectEndothelial cells
dc.subjectIn vitro cell models
dc.subjectMicrofluidics
dc.subjectPermeability
dc.subjectShear stress
dc.subjectTransport
dc.subjectaquaporin 4
dc.subjectexcitatory amino acid transporter 1
dc.subjectexcitatory amino acid transporter 2
dc.subjectexcitatory amino acid transporter 4
dc.subjectfibroblast growth factor 2
dc.subjectgelatinase A
dc.subjectgelatinase B
dc.subjectglial cell line derived neurotrophic factor
dc.subjectmultidrug resistance protein
dc.subjectmultidrug resistance protein 1
dc.subjectplatelet derived growth factor
dc.subjectthrombospondin 2
dc.subjectvasculotropin
dc.subjectAlzheimer disease
dc.subjectamyotrophic lateral sclerosis
dc.subjectArticle
dc.subjectastrocyte
dc.subjectblood brain barrier
dc.subjectbrain blood flow
dc.subjectbrain capillary endothelial cell
dc.subjectbrain development
dc.subjectCACO 2 cell line
dc.subjectcell culture
dc.subjectcell interaction
dc.subjectcell membrane permeability
dc.subjectcell transport
dc.subjectcentral nervous system disease
dc.subjectendocytosis
dc.subjecthomeostasis
dc.subjecthuman
dc.subjectMDCK cell line
dc.subjectmicrofluidics
dc.subjectneuroprotection
dc.subjectParkinson disease
dc.subjectprotein expression
dc.subjectshear stress
dc.subjecttight junction
dc.subjectanimal
dc.subjectblood brain barrier
dc.subjectcell culture
dc.subjectcentral nervous system disease
dc.subjectmicrofluidic analysis
dc.subjectpathology
dc.subjectpathophysiology
dc.subjectpermeability
dc.subjectAnimals
dc.subjectBlood-Brain Barrier
dc.subjectCells, Cultured
dc.subjectCentral Nervous System Diseases
dc.subjectHumans
dc.subjectMicrofluidic Analytical Techniques
dc.subjectPermeability
dc.titleRole of microfluidics in blood-brain barrier permeability cell culture modeling: Relevance to CNS disorders
dc.typeArticle


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem