Mostrar el registro sencillo del ítem

dc.contributor.authorOrtolan A.O.
dc.contributor.authorCaramori G.F.
dc.contributor.authorMatthias Bickelhaupt F.
dc.contributor.authorParreira R.L.T.
dc.contributor.authorMuñoz-Castro A.
dc.contributor.authorKar T.
dc.date.accessioned2020-09-02T22:25:09Z
dc.date.available2020-09-02T22:25:09Z
dc.date.issued2017
dc.identifier10.1039/c7cp03925e
dc.identifier.citation19, 36, 24696-24705
dc.identifier.issn14639076
dc.identifier.urihttps://hdl.handle.net/20.500.12728/5674
dc.descriptionWe have quantum chemically analyzed the bonding mechanism behind the affinity of various heterocalixarenes for anions with a range of geometries and net charges, using modern dispersion-corrected density functional theory (DFT-D3BJ). The purpose is to better understand the physical factors that are responsible for the computed affinities and thus to develop principles for a more rational design of anion receptors. Our model systems comprise heterocalixarenes 1-4 as hosts, which are characterized by different bridging heteroatoms (O, N, S) as well as the anionic guests Cl-, Br-, I-, BF4-, CH3CO2-, H2PO4-, HSO4-, NCS-, NO3-, PF6-, and SO42-. We use various analysis schemes (EDA, NCI, and NBO) to elucidate the interactions between the calixarene cavity and the anions to probe the importance of the different bonding modes (anion-π, lone-pair electron-π, σ-complexes, hydrogen bonds, and others) of the interactions. Electrostatic interactions appear to be dominant for heterocalixarenes with oxygen bridges whereas orbital interactions prevail in the case of nitrogen and sulfur bridges. Dispersion interactions are however in all cases non-negligible. © 2017 the Owner Societies.
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.titleHow the electron-deficient cavity of heterocalixarenes recognizes anions: Insights from computation
dc.typeArticle


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem