Mostrar el registro sencillo del ítem

dc.contributor.authorDuarte Y.
dc.contributor.authorFonseca A.
dc.contributor.authorGutiérrez M.
dc.contributor.authorAdasme-Carreño F.
dc.contributor.authorMuñoz-Gutierrez C.
dc.contributor.authorAlzate-Morales J.
dc.contributor.authorSantana L.
dc.contributor.authorUriarte E.
dc.contributor.authorÁlvarez R.
dc.contributor.authorMatos M.J.
dc.date.accessioned2020-09-02T22:16:41Z
dc.date.available2020-09-02T22:16:41Z
dc.date.issued2019
dc.identifier10.1002/slct.201803222
dc.identifier.citation4, 2, 551-558
dc.identifier.issn23656549
dc.identifier.urihttps://hdl.handle.net/20.500.12728/4291
dc.descriptionAlzheimer's disease (AD) is the most prevalent neurodegenerative disease, presenting the most devastating consequences on human health and life quality. Coumarin-quinoline hybrids were synthesized following a very efficient and versatile strategy. Small structural variations contributed to dual acetyl/butyrylcholinesterases (AChE/BuChE) activity or selectivity towards one of these enzymes. In addition, some of the studied compounds are interesting iron chelators, presenting a tendency to be neuroprotective. Moreover, the compounds are not cytotoxic for SH-SY5Y neuroblastoma cells. Compound 9c proved to be the most interesting compound of the studied series. This compound is selective against AChE and proved to be an excellent iron chelating agent (iron chelation at 100 μM=72.87%). Molecular docking studies were performed to establish the nature of the interaction between the studied compounds and the binding pockets, leading to a rationalization of structure–activity relationships. Compound 9c forms a well-defined π-stacking interaction with Phe330 and interacts with Tyr121 residue via a hydrogen bond, while the inactive compounds cannot establish these interactions. Important preliminary results against different targets, as well as some structure–activity relationships, were concluded from the experimental results. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
dc.language.isoen
dc.publisherWiley-Blackwell
dc.subjectAcetyl/butyrylcholinesterases’ inhibitors
dc.subjectCoumarin-quinoline hybrids
dc.subjectDrug design
dc.subjectIron chelating agents
dc.subjectNeuroprotective agents.
dc.titleNovel Coumarin-Quinoline Hybrids: Design of Multitarget Compounds for Alzheimer's Disease
dc.typeArticle


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem