Mostrar el registro sencillo del ítem

dc.contributor.authorBanerjee, Aparna
dc.contributor.authorRoy, Rajendra Kr
dc.contributor.authorSarkar, Shrabana
dc.contributor.authorL. López, Juan
dc.contributor.authorVuree, Sugunakar
dc.contributor.authorBandopadhyay, Rajib
dc.date.accessioned2024-04-09T23:09:20Z
dc.date.available2024-04-09T23:09:20Z
dc.date.issued2024
dc.identifier.issn07173458
dc.identifier.urihttps://hdl.handle.net/20.500.12728/10348
dc.description.abstractBackground: At present, research on facile, green synthesis of nanoparticles has significantly increased because of its fast, one-step, cost-effective, time-efficient, and non-toxic nature. In this study, we have reported a single-step green synthesis of copper nanoparticles using cell wall polysaccharides of a hot spring origin, thermotolerant Bacillus species. Result: Copper nanoparticles were characterized using UV-visible spectrophotometry, fluorescence and Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, particle size, and zeta potential analyses. UV-visible spectra of synthesized copper nanoparticles exhibited a band cantered between 220–235 nm, characteristic spectra of copper oxide nanoparticles. Infrared spectra showed the band at 490-530 cm−1 corresponding to metal-oxygen or copper nanoparticle vibration, supporting the presence of copper oxide nanoparticles in the monoclinic phase. The energy dispersive spectra of copper nanoparticles exhibited a strong signal from elemental copper. The dynamic Light Scattering pattern confirmed the nanoparticle nature of the studied sample. These nanoparticles showed preferential activity against gram-negative pathogens, Salmonella typhi and Escherichia coli. The thermodynamic nature of the nanoparticles is also established for its antibacterial actions. Conclusions: The antibacterial action and its thermodynamics reinforce the possible use of copper nanoparticles as an alternative to commercially available antimicrobials. This study may open a new path for future studies to treat harmful microorganisms resistant to traditional antibiotics in a greener way. How to cite: Banerjee A, Roy RK, Sarkar S, et al. Synthesis of hot spring origin bacterial cell wall polysaccharide-based copper nanoparticles with antibacterial property. Electron J Biotechnol 2024;67. https://doi.org/10.1016/j.ejbt.2023.11.005. © 2023 Pontificia Universidad Católica de Valparaísoes_ES
dc.description.sponsorshipDST FIST, (SR/FST/LS-1/2018/188)es_ES
dc.language.isoenes_ES
dc.publisherPontificia Universidad Catolica de Valparaisoes_ES
dc.subjectAntibacterial activityes_ES
dc.subjectBacilluses_ES
dc.subjectCell wall polysaccharidees_ES
dc.subjectCopper nanoparticleses_ES
dc.subjectGreen synthesises_ES
dc.subjectHot springes_ES
dc.subjectNanoparticleses_ES
dc.subjectThermodynamicses_ES
dc.subjectThermotolerant bacilluses_ES
dc.titleSynthesis of hot spring origin bacterial cell wall polysaccharide-based copper nanoparticles with antibacterial propertyes_ES
dc.typeArticlees_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem