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A B S T R A C T   

The emergence of a new coronavirus (COVID-19) has become a major global concern that has damaged human 
health and disturbing environmental quality. Some researchers have identified a positive relationship between 
air pollution (fine particulate matter PM2.5) and COVID-19. Nonetheless, no inclusive investigation has 
comprehensively examined this relationship for a tropical climate such as India. This study aims to address this 
knowledge gap by investigating the nexus between air pollution and COVID-19 in the ten most affected Indian 
states using daily observations from 9th March to September 20, 2020. The study has used the newly developed 
Hidden Panel Cointegration test and Nonlinear Panel Autoregressive Distributed Lag (NPARDL) model for 
asymmetric analysis. Empirical results illustrate an asymmetric relationship between PM2.5 and COVID-19 cases. 
More precisely, a 1% change in the positive shocks of PM2.5 increases the COVID-19 cases by 0.439%. Besides, 
the estimates of individual states expose the heterogeneous effects of PM2.5 on COVID-19. The asymmetric 
causality test of Hatemi-J’s (2011) also suggests that the positive shocks on PM2.5 Granger-cause positive shocks 
on COVID19 cases. Research findings indicate that air pollution is the root cause of this outbreak; thus, the 
government should recognize this channel and implement robust policy guidelines to control the spread of 
environmental pollution.   

1. Introduction 

Along with mounting public health concerns, pandemics wreak 
havoc on the socio-economic fabric of disease-stricken countries (Ela-
varasan et al., 2021). In the past few years, human civilization has been 
afflicted by a number of pandemics (Yang et al., 2021), resulting in 
massive deaths (Khan et al., 2021), illnesses (Yu et al., 2021), and costs 
trillions of dollars worldwide (Iqbal et al., 2021). By the end of 2019, the 
world was challenged by a novel pandemic known as COVID-19 (Linil-
los-Pradillo et al., 2021). Regardless of the Chinese government’s 

attempts to isolate Wuhan city from other regions, all continents were 
rampant in the outbreak, and it was declared as a worldwide pandemic 
by the World Health Organization (Razzaq et al., 2020). COVID-19 has 
not been completely eradicated, and even certain regions continue to 
observe an upward tendency, mostly due to the lack of disease-resistant 
vaccination and treatment (Lai et al., 2020). 

India, which shares a border with China, is also battling new coro-
navirus. The country reported just three COVID-19 incidences through 
March 2, 2020 (Irfan et al., 2021a). During the next month, however, the 
confirmed COVID-19 instances grew to thousands all over the country. 
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The COVID-19 patients are still growing rapidly, and the scenario is 
deteriorating. According to government figures, the COVID-19 cases 
totalled 37.4 M in India, with 486,482 deaths (Worldometers, 2021). 
India’s most serious concern is combating COVID-19, which has lately 
attracted worldwide attention. To prevent the spread of COVID-19, the 
Indian government has implemented a number of action plans, 
including isolation facilities, designated healthcare facilities, testing 
laboratories, case tracking, and contingency planning. Additionally, the 
government is attempting to fortify states by providing a prompt and 
efficient response to any coronavirus-related crises. Several policies 
have been implemented in this vein, such as lockdown, quarantine, and 
social isolation (Ghosh et al., 2020). 

With increase in energy consumption (Abbasi et al., 2022; Akram 
et al., 2022; Dagar et al., 2021; Fang et al., 2022), air pollution is 
increasing globally (Akram et al., 2020; Islam et al., 2022; Sun et al., 
2021; Tanveer et al., 2021) and research exposed that it/ is a carrier of 
SARS-CoV-2 (Marquès et al., 2021). Researchers argued that air pol-
lutants have a detrimental effect on cardio-pulmonary and immuno-
logical systems by reducing hosts’ susceptibility to viral and bacterial 
infections. For instance, Taghizadeh-Hesary et al. (2021) scrutinized the 
energy–pollution–health nexus among low and middle-income Asian 
countries using the generalized method of moments estimation tech-
nique. The study results revealed that fossil fuel consumption increases 
air pollution, which leads to lung and respiratory diseases. In another 
study, Taghizadeh-Hesary and Akbari (2020) examined the parameters 
influencing the immune system’s response to COVID-19. The authors 
exposed that SARS-CoV-2 weakens the immune system by increasing 
IFN-1 yield. This process culminates in the accumulation of inflamma-
tory monocytes/macrophages and neutrophils, contributing to lung 
immunopathology. Later, the cytokine storm further weakens the im-
mune system through IFN-1-mediated T cell apoptosis. Higher concen-
trations of air pollutants are linked with higher occurrences of 
respiratory viral infections, particularly when the viral infection occurs 
simultaneously with a transient increase in air pollution exposure 
(Rasoulinezhad et al., 2020). Air pollution may be associated to an in-
crease in COVID-19 intensity and fatality owing to its effect on chronic 
conditions such as cardiovascular disease and diabetes (Bourdrel et al., 
2021). Air pollution also contributes to the development of car-
diometabolic conditions such as heart disease and insulin sensitivity. 

According to research, roughly 38% of COVID-19 patients in China had 
hypertension or coronary heart disease, whereas approximately 19% 
had diabetes. Further, these individuals exhibited higher mortality from 
COVID-19 infection (Zhou et al., 2020). 

Air pollution aggravates the intensity of COVID-19 pneumonia by 
deteriorating the respiratory system (Irfan et al., 2021). Poor air quality 
mainly, PM2.5 is one of the key reasons for excessive mortality (Ali and 
Islam, 2020). Taghizadeh-Hesary and Taghizadeh-Hesary (2020) stud-
ied the impact of air pollution on human health in Southeast Asian 
countries and found that PM2.5 and CO2 are major risk factors for lung 
cancer in the region. Abundant medical studies revealed that elevated 
PM2.5 levels lead to serious chronic health conditions, such as bronchitis 
and emphysema, breathlessness, itchy throat, respiratory infections, and 
asthma by increasing the lungs’ susceptibility to infection (Pozzer et al., 
2020). These conditions are comparable to those associated with 
SARS-CoV-2 (Ameri et al., 2020). Air pollution (PM2.5) can provoke the 
COVID-19 pandemic in two ways. First, by making people more 
vulnerable to COVID-19 infection through increasing their vulnerability 
to chronic diseases and pushing COVID-19 infected individuals at acute 
danger and even death. Second, by increasing the risk of exposure to 
COVID-19 since it can be transmitted by microscopic particles or com-
bined with ultrafine aerosols (Annesi-Maesano et al., 2021). The situa-
tion is explained in Fig. 1. 

Previous research has mostly focused on disease control and pre-
vention mechanism (Gao and Yu, 2020; Kang et al., 2020). The first set 
of research considered the epidemiology of infections (Nkenfou et al., 
2021; Shah et al., 2020). The second set of research determined the 
effect of various factors on epidemic prevention (Ahmad et al., 2021; 
Yang and Ren, 2020; Irfan et al., 2021). The third set of research 
examined the current state of disease profiles to develop effective pre-
ventative action plans (Irfan et al., 2021b; Rawat et al., 2021). Finally, 
the fourth set of research scrutinized individuals’ perceptions of the 
importance of preventing epidemics (Ahmad et al., 2020a; Chughtai and 
Khan, 2020; Irfan et al., 2021). Despite the significance of past in-
vestigations, the propensity to investigate the relationship between air 
pollution and COVID-19 is a prime agenda. The current work responds 
to this literature gap by addressing the following research issues: (i) 
what is the nexus between PM2.5 and COVID-19 spread in India? (ii) 
Does COVID-19 a climate savior or a climate devil? Though 

Fig. 1. Air pollution and COVID-19 transmission. Data source: (Annesi-Maesano et al., 2021).  
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multipollutant analyses are worthy of consideration, we focus on PM2.5, 
which is very popular in air pollution epidemiology studies (Heal and 
Beverland, 2017). The fundamental rationale of selecting PM2.5 includes 
evidence in the former studies about chronic health issues and the 
growing risks of morbidity and respiratory infections. Besides, we chose 
PM2.5 as compared to PM10 because the former is more associated with 
human illness and correlates with greater health impacts than PM10. 
From the current air pollution literature, the most valid evidence points 
to PM2.5 regarding respiratory mortality impacts as compared to other 
air pollutants (Coker et al., 2020). 

Along these lines, following are the contributions of the study to the 
existing literature: Firstly, the study examines and elaborates on the ef-
fect of air pollution (PM2.5) on COVID-19 transmissibility in India using 
the comprehensive framework. Former researchers have been limited in 
their analysis of contentious findings and have concentrated exclusively 
on the consequences of atmospheric circumstances. Secondly, the 
regional investigation is much more credible and valid in estimating the 
air pollution impact on COVID-19 transmissibility by taking into ac-
count the Indian states and their apparent climate variations. Thirdly, by 
recognizing crucial factors, the danger of COVID-19 and the severity of 
forthcoming outbreaks can be minimized. Finally, a detailed under-
standing of the connection between air pollution and COVID-19 can be 
accomplished in clinical practice through the execution of infection 
control policy development and public health procedures. 

The structure of the remaining study is given as follows: section 2 
provides data description 2. Section 3 elaborates the methodology of the 
study. Section 4 reports research results and discussion. Finally, section 
5 presents concluding remarks, policy implications, and study 
limitations. 

2. Data 

This paper used the daily data of PM2.5 concentrations and COVID-19 
cases in the ten most infected Indian states. The National Air Quality 
Index database has been accessed to obtain the daily mean data of PM2.5 
emissions from March 9, 2020 to September 20, 2020 (National Air 
Quality Index, 2020), whereas COVID-19 data is accessed from 
(COVID-19 India, 2021). For the analysis, all variables were transformed 
into their natural logarithm. The capital cities of all states were chosen 
for PM2.5 input since they contain the largest population and provide 
efficient medical facilities. Consequently, population density is higher 
here than in other cities. Likewise, each capital city contains an inter-
national airport, signifying that viral infection is considerable danger. 

3. Methodology 

The research has incorporated PM2.5 pollution as the primary indi-
cator to describe COVID-19 cases and realized the potential non-linear 
linkage between them, which have not been previously analyzed. In 
this way, this is the pioneering study to reveal the asymmetrical ties 
between PM2.5 pollution and COVID-19 cases among the chosen states in 
the Indian context. The following econometric methods have been 
employed to fulfil the study objectives. (i) The CD test of Pesaran (2004) 
is performed after developing the model to investigate the 
cross-sectional dependence (CSD). (ii) The Pesaran (2007) CIPS and 
CADF unit root tests are applied to test CSD and serial correlation. (iii) 
Next, asymmetric cointegration is conducted after verifying unit root 
(Ahmad et al., 2020b). (iv) An in-depth discussion of the NPARDL 
method is provided. (v) Finally, asymmetric causality is tested between 
PM2.5 and COVID-19 spread. The descriptive statistics are provided in 
Table 1. 

3.1. Analysis of cross-sectional dependence and unit root test 

CSD is commonly present in panel data. Overlooking CSD can cause 
inefficient and unreliable estimates of regression (Ahmad et al., 2020b; 

Akram et al., 2020a). The chosen Indian states have certain common 
features of PM2.5 pollution due to industrialization. We, therefore, start 
the empirical investigation employing Pesaran’s CSD test (2004). 

The unit root tests focusing on the econometrics of first-generation 
mostly overlook CSD. Nevertheless, the unit root tests of CADF and 
CIPS examine stationarity and check panel data’s heterogeneity 
(Pesaran, 2007). Using a standard framework, Pesaran (2007) estab-
lished the improved root unit tests of CADF and CIPS. Consequently, 
researchers have widely adopted these tests that allow CSD (Akram 
et al., 2020b; Aydin, 2019). 

On the one hand, the unit root tests help in deciding whether the 
shocks to PM2.5 pollution and COVID-19 cases remain temporary or 
permanent and, on the other hand, indicate whether the variables 
should be decomposed or not. However, a long-run linkage is present 
between the studied variables, and any system disruptions would have a 
temporary deviation in the case of a unit root. Instead, in the absence of 
cointegration, any external shock can have a permanent effect and must 
be treated accordingly. 

3.2. Analysis of asymmetric cointegration 

The newly developed Hatemi-J’s (2020) test of Hidden Panel Coin-
tegration is employed to check asymmetric cointegration between the 
+ve and -ve components of variables. This test assumes that the vari-
ables are not cointegrated in their genuine form, but cointegration may 
exist between the hidden components (i.e., +ve and –ve). One possible 
reason is that the presence of possible unknown trends in a 
non-cointegrated relationship drives the parts of the variables rather 
than the variables themselves. 

The following steps have been carried out during the analysis. Firstly, 
the existence of a unit root between the variables is examined. The test 
of Hatemi-J (2020) presumes that series are stationary at the first dif-
ference. After stationarity check, we estimate the relevant equations 

Table 1 
Descriptive statistics.  

Variables Observations Mean Std. Dev. Min Max 

log PM2.5 196 2.883 .81 0 5.17 
log COVID-19 196 5.876 2.557 0 10.122 
Madhya Pradesh      
log PM2.5 196 2.544 .518 1.099 4.159 
log COVID-19 196 5.198 1.985 0 7.866 
Tamil Nadu      
log PM2.5 196 2.179 .679 0 3.689 
log COVID-19 196 6.521 2.603 0 8.853 
Delhi      
log PM2.5 196 3.546 .655 1.099 4.796 
log COVID-19 196 6.051 2.248 0 8.406 
Gujarat      
log PM2.5 196 3.5 .336 2.639 4.205 
log COVID-19 196 5.608 2.028 0 7.267 
Telangana      
log PM2.5 196 3.088 .337 1.792 4.511 
log COVID-19 196 5.19 2.438 0 8.012 
Karnataka      
log PM2.5 196 3.187 .25 2.485 3.871 
log COVID-19 196 5.655 2.904 0 9.2 
West Bengal      
log PM2.5 196 2.083 .584 .693 3.871 
log COVID-19 196 5.406 2.626 0 8.094 
Uttar Pradesh      
log PM2.5 196 2.854 .758 1.099 4.844 
log COVID-19 196 5.917 2.424 0 8.856 
Maharashtra      
log PM2.5 196 2.294 1.039 0 5.17 
log COVID-19 196 7.43 2.425 .693 10.122 
Andhra Pradesh      
log PM2.5 196 3.554 .367 2.197 4.511 
log COVID-19 196 5.778 2.935 0 9.29 

Note: PM2.5 ¼ Air pollution, COVID-19 ¼ COVID-19 cases. 
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using the particular variables of this research as: 

C19+
it = α+

i + β+
i NO2+

it + ε+it (1)  

C19−
it = α−

i + β−
i NO2−

it + ε−it (2) 

Here C19 denotes COVID-19 cases. The variable can be further 
decomposed as follows: 

C19+
it =

∑t

j=1
ΔC19+

ij =
∑t

j=1
max(ΔC19ij, 0) (3)  

C19−
it =

∑t

j=1
ΔC19−

ij =
∑t

j=1
max(ΔC19ij, 0) (4) 

Besides, the same decomposition can be used for the independent 
variable as: 

NO2+
it =

∑t

j=1
ΔNO2+

ij =
∑t

j=1
max(ΔNO2ij, 0) (5)  

NO2−
it =

∑t

j=1
ΔNO2−

ij =
∑t

j=1
max(ΔNO2ij, 0) (6) 

Finally, ε+it and ε−it residuals must be stationary to allow the cointe-
gration of the series. To tackle this condition, we have used the unit root 
test of Pesaran (2007) with CSD. 

3.3. Non-linear panel ARDL model 

The majority of researchers have applied the linear structure, i.e., 
ARDL specification to investigate the relationship among variables 
(Dong et al., 2018; Rehman et al., 2019). This trend shows the impor-
tance of the ARDL method to test the complex relationships among 
variables. On the flip side, researchers have also applied the NARDL 
method in a time-series context to explain the non-linear relationship 
between COVID-19 and other related variables. (Sarfraz et al., 2020; 
Vuong et al., 2019). Generally, the +ve and -ve components of the in-
dependent variables in the NARDL method are described by using a 
single equation. 

The panel structure of NARDL is also the same as studied in the time- 
series framework. NPARDL model is a non-linear depiction of panel data 
that examines panel data’s heterogeneous nature and fits panels with 
large T, as is the sample of this research. Following the Salisu and Isah 
(2017) and Kouton (2019) specifications, we have used one independent 
variable to explain non-linear effects best suited for this study. Using 
Shin et al. (2014) model, we integrate the non-linear effects in the panel 
context, as follows: 

ΔC19it = αo + α1C19it− 1 + α+
2 NO2+

it− 1 + α−
2 NO2−

it− 1 +
∑K

J=1
βjΔC19it− j

+
∑m1

j=0
( γ+j ΔNO2+

it− j + γ−j ΔNO2−
it− j) + μi + εit

(7) 

Here, lag orders are denoted by k and m, states specific impacts are 
represented by μi, and the standard error term is denoted by εit . The 
coefficients α+

2 and α−
2 compute long-run symmetries, whereas, and γ+j 

and γ−j compute short-run asymmetries, respectively. This equation is 
represented in an error correction system in the following way. 

ΔC19it = αo + σεit− 1 +
∑k

j=1
βjΔC19it− j

+
∑m1

j=0
( γ+j ΔNO2+

it− j + γ−j ΔNO2−
it− j) + μi + εit

(8) 

Here, εit− 1 represents the NPARDL model’s long-term equilibrium. σ 

represents the speed-adjustment parameter, which measures the time 
needed to achieve long-run equilibrium after any shock. Following null 
hypothesis “no cointegration,” the cointegration relation is confirmed 
as: 

H0 : α1 =
∑5

i=2
α+

i =
∑5

i=2
α−

i = 0 (9) 

PMG method is used to estimate the NPARDL model since it offers 
heterogeneous short-run coefficients and homogenous long-run co-
efficients for all states (Rumbia et al., 2020). The primary reason for 
employing the PMG method is that the correlation between PM2.5 
pollution and COVID-19 cases could be different in the short-run. On the 
contrary, similar behaviour is possible for the selected variables in the 
long-run. It is important to mention that the cointegration association’s 
estimation can also be done using other methods like FMOLS and DOLS. 
However, only the long-run relationship between the variables could be 
examined in these methods without capturing the short-run dynamics 
(Akram et al., 2020a). 

3.4. Asymmetric panel causality testing 

This paper also discusses the causality between PM2.5 pollution and 
COVID-19. For this purpose, we employ the Hatemi-J’s (2011, 2012) test 
of asymmetric panel causality to examine the asymmetric causality be-
tween PM2.5 pollution and COVID-19 cases. Consideration of asymmetry 
is essential in causality analysis as it improves the inference (Hatemi-J, 
2012). It is possible to investigate the causality between the +ve and -ve 
constituents of the variables, which is the central property of (Hatemi-J, 
2012) test. 

The test involves the following steps: First of all, the series of the 
study is divided into positive and negative components. Then we esti-
mate the following VAR-SUR model. 

[
x+it
y+it

] = [
αi0
βi0

] + [

∑p

j=1
αi1j

∑p

j=1
αi2j

∑p

j=1
βi1j

∑p

j=1
βi2j

]*[
x+it− j

y+it− j
] + [

ε+i1
ε+i2

] (10) 

To check the causality from Y+
it to X+

it the following null hypothesis is 
constructed: 

H0 : αi2j = 0, ∀ j, and j = 1,……., p  

4. Results and discussion 

The empirical results are discussed in this section as follows: The 
results of CSD and unit root tests are compiled in the first subsection. The 
results of asymmetric cointegration analysis are presented in the second 
subsection. The results of NPARDL and its robustness are discussed in 
the third subsection, while the fourth section illustrates the results of 
asymmetric panel causality. 

4.1. Results of cross-sectional dependence analysis and unit root 

Suitable unit root tests are selected by analyzing CSD, which con-
siders the CSD in panel data. The results of the CSD test are compiled in 
Table 2. It is clear that CSD occurs in our chosen states, so the null hy-
pothesis of “no CSD” is rejected. The findings stipulate significant proof 
of CSD in PM2.5 pollution and COVID-19, although at different levels 
(the correlation coefficient for all variables is not the same). Moreover, 

Table 2 
Cross-sectional dependence test.  

Variable CD-test p-value corr abs(corr) 

log PM2.5 10.510 0.000 0.112 0.159 
log COVID-19 86.330 0.000 0.920 0.920 

Notes: Under the null hypothesis of cross-section independence CD ~ N (0, 1). 
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the findings validate that the impact of shock from any panel state also 
affects other states. Once CSD is verified, the unit root tests of CIPS and 
CADF are employed, which allow serial correlation. Besides unit root 
testing, both tests also demonstrate the heterogeneity of variables. The 
findings are reported in Table 3, indicating that all variables have a unit 
root at the level. However, at the first difference, all variables are sta-
tionary. Firstly, all of the series are I(1), indicating that Hatemi-J’s 
(2020) asymmetric cointegration is possible to examine the long-run 
relationship between variables. Secondly, this finding shows that the 
first prerequisite of NPARDL estimation has been met. We confirmed 
that none of the order two variables I(2) is incorporated to estimate the 
NPARDL. Finally, any shock on PM2.5 pollution would have a permanent 
environmental effect. Research conducted in Italy, France, Germany, 
and Spain found a significant linkage between PM2.5 concentrations and 
the COVID-19 infected patients (Ogen, 2020). In the same vein, Iqbal 
et al. (2021) studied the association between COVID-19 infections and 
variations in air pollution levels in China and exposed that PM2.5 is the 
primary cause of COVID-19 transmissibility and fatality in the country. 
The findings reveal that a 1% increase in PM2.5 concentration is asso-
ciated with an 11.67% increase in COVID-19 cases and an 18% increase 
in COVID-19 fatalities. 

4.2. Results of asymmetric cointegration 

We move further with hidden cointegration and employ Hatemi-J’s 
(2020) test of asymmetric cointegration. The results of asymmetric 
cointegration are compiled in Table 4. Results demonstrate the asym-
metric structure in the cointegration relationship between the series for 
the selected states. The results further illustrate a hidden or non-linear 
cointegration between PM2.5 pollution and COVID-19, which is in line 
with the recent research findings of (Zoran et al., 2020). In another 
study, Frontera et al. (2020) found that COVID-19 mortality was twice as 
high in regions with the highest PM2.5 concentrations compared to the 
areas with low PM2.5 concentrations. The explanation for using 
non-linear cointegration analysis is that the linear models cannot catch 
periodic variations, while non-linear models consider these variations 
(Kouton, 2019). 

4.3. Results of the non-linear panel ARDL model 

After confirming the asymmetric cointegration between PM2.5 and 
COVID-19 cases, we proceed with NPARDL. We follow Kouton (2019) 
and Akram et al. (2020b) for panel representation of NARDL. PMG 
estimation method has been employed to obtain the results of NPARDL 
(see Table 5). A significant negative error correction term indicates that 
it will convert to a long-run symmetry state following a shock. This 
process demonstrates non-linear cointegration as estimated above and 
implies that the long-run equilibrium between PM2.5 pollution and 
COVID-19 cases is asymmetric. 

Research results expose the asymmetric association between PM2.5 
and COVID-19 in the panel of ten Indian states. Positive shocks of PM2.5 

emissions cause an increase, and negative shocks of PM2.5 emissions lead 
to a decrease in COVID-19 cases in long-run. In particular, a 1% change 
in the positive shocks of PM2.5 pollution increases the COVID-19 cases 
by 0.439%. Wu et al. (2020) obtained similar findings and showed a 
positive linkage between long-term PM2.5 and mortality from COVID-19 
in the USA. (Cole et al., 2020) investigated the influence of PM2.5 on 
COVID-19 cases, hospitalizations, and fatalities throughout the 
Netherlands’ 355 municipalities. The authors noted that a 1 μg m− 3 rise 
in long-run PM2.5 levels is related to an extra nine cases, three hospi-
talizations, and two fatalities. Notably, this research showed a signifi-
cant association between air pollution and COVID-19 in rural locations 
as well, suggesting direct air pollution–COVID-19 linkage irrespective of 
the density or crowding of the urban context. On the contrary, the 
negative shock of PM2.5 pollution cause to decline in COVID-19 cases 
because a 1% fluctuation in the negative shocks of PM2.5 pollution re-
duces the COVID-19 cases by 0.694% in the long-run. These outcomes 
verify an asymmetric relationship between PM2.5 pollution and 
COVID-19, given that the positive and negative PM2.5 shocks exhibit 
dissimilar effects on COVID-19 cases. The Wald test statistics for short 
and long-run asymmetries are also significant and verify the non-linear 
association between PM2.5 pollution and COVID-19. 

Moreover, the short-run effect of PM2.5 on coronavirus dispersion is 
also asymmetric. More specifically, a 1% variation in the positive shock 
on PM2.5 pollution increases COVID-19 cases by 0.112%, while a 1% 
variation in the negative shock on PM2.5 pollution decreases COVID-19 
cases by 0.0348%. Among the research examining the short-term im-
pacts of air pollution, Frontera et al. (2020) found a significant rela-
tionship between PM2.5 and pandemic spread in Italy. The effects of 
PM2.5 and PM10 on daily verified COVID-19 patients were evaluated in 
China. The COVID-19 patients were related to short-term lagged 
growths in PM2.5, with the magnitude of the impact being larger for 

Table 3 
Pesaran’s (2007) unit root test.  

Variables Level 1st difference Integration 
order 

Intercept Intercept 
& trend 

Intercept Intercept & 
trend  

Pesaran CIPS 
PM2.5 − 1.89 − 2.36 − 5.622*** − 5.947*** 1(1) 
COVID- 

19 
− 1.98 − 2.06 − 3.582*** − 4.134*** 1(1) 

Pesaran CADF 
PM2.5 − 2.001 − 1.476 − 5.020*** − 5.458*** 1(1) 
COVID- 

19 
− 1.765 − 1.486 − 2.113*** − 2.323*** 1(1)  

Table 4 
Hatemi-J’s (2020) asymmetric cointegration.  

Variables Residuals CD 
test 

Residuals Unit root 
test 

Decision regarding the 
residuals 

Y+ , X+ 93.71 (0.000) − 7.0987 (0.000) Stationary 

Y+ , X− 92.65 (0.000) − 5.022 (0.000) Stationary 

Y− , X+ 90.96 (0.000) − 4.829 (0.000) Stationary 

Y− , X− 92.92 (0.000) − 5.378 (0.000) Stationary 

Notes: Y ¼ PM2.5 pollution, X ¼ COVID-19 cases. p-values are provided in (). 

Table 5 
Non-linear panel ARDL analysis.  

Variables Dependent variable: COVID-19 cases 

ECT − 0.123***  
(0.0274) 

ΔPM2.5 pollution+
t  0.112**  

(0.0554) 
ΔPM2.5 pollution−

t  − 0.0348  
(0.0369) 

PM2.5 pollution+
t  0.439***  

(0.144) 
PM2.5 pollution−

t  − 0.694***  
(0.144) 

Constant − 3.807***  
(1.201) 

log likelihood − 1192.222 
Cointegration F-test 209.50** [0.0507] 
Long-run asymmetry Wald test 586.62***[0.0000] 
Short-run asymmetry Wald test 5.26**[0.0218] 

Note: Significance level (***p < 0.001, **p < 0.05, *p < 0.01). Standard error 
values are reported in brackets (), while p-values are reported in parentheses [] 
for long and short-run asymmetry. PMG method is employed for the estimation 
of the model. 
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PM2.5 than for PM10 (Wang et al., 2020). Another research examined the 
short-term impact of six distinct pollutants in 120 Chinese cities to 
establish its connection with the COVID-19 cases. Daily COVID-19 in-
stances increased by approximately 2% for every 10 μg m− 3 rise in PM2.5 
and PM10 during two weeks (Zhu et al., 2020). Though the positive 
shocks of PM2.5 pollution in the short and long-run positively affect 
COVID-19 cases; however, the positive impact is stronger in the 
long-run. It implies an improvement in air quality during the lockdown 
period (in the short-run) due to less PM2.5 emissions. However, as the 
government lifted the lockdown restrictions, the air quality deteriorated 
due to an escalated amount of PM2.5 concentrations. 

Furthermore, previous literature verified that the high concentra-
tions of PM2.5, when inhaled, cause severe health problems, including 
shortness of breath, chest pain, throat irritation, coughing, and lung 
infection (Rovira et al., 2020). It can also exacerbate chronic respiratory 
conditions such as asthma and impair the body’s capacity to combat 
respiratory diseases (Copat et al., 2020). COVID-19 also has similar 
symptoms (Manisalidis et al., 2020), suggesting that an upsurge in air 
pollution (PM2.5 concentration) escalates the tendencies and vulnera-
bilities of COVID-19 cases (Cole et al., 2020; Wu et al., 2020). 

Experiments have shown that air pollution lowers immune response, 
allowing viruses to spread and reproduce more easily. Air pollution in-
duces lung infection, which can have short-term and long-term conse-
quences, including asthma and fibrosis (Guan et al., 2016). An increase 
in PM2.5 has been attributed to an 11% increase in cardiovascular 
mortality each year. A spike in PM2.5 over a short period has also been 
accompanied by an upsurge in severe cardiac incidents (Nawrot et al., 
2011). Another research explains that overcrowding of medical facilities 
and high fatality due to coronavirus experienced in several European 
countries could be connected to peaks in PM2.5 and specific weather 
conditions that promoted the virus’s spread (Annesi-Maesano et al., 
2021). 

Poor air quality mainly, PM2.5 is one of the key reasons for a sub-
stantial number of excess mortality (Ali and Islam, 2020). Long-term 
contact with air pollution significantly affects life expectancy more 
than any contagious disease. COVID-19 mortality is impacted by 
comorbidities such as arterial hypertension, diabetes mellitus, obesity, 
pre-existing coronary artery disease, and respiratory illnesses such as 
asthma, influenced by air pollution. Apart from their direct contact with 
the human body, respiratory infections have complex interfaces in the 
air, which might affect the virus’s persistence (Pozzer et al., 2020). 

As a step further, we run the NPARDL model using the MG technique 
to perform a robustness check to verify the validity of the proposed 
model. The findings presented in Table 5 are supported by the results of 
Table A1 (see Appendix A). Sensitivity analysis further validates that the 
research results are robust, and the effect of PM2.5 on COVID-19 is 
asymmetric in the selected states. Meo et al. (2021) explored the effect of 
PM2.5 on daily COVID-19 cases and deaths in London. The authors 
opined that PM2.5 has a positive association with COVID-19, as a 1 μm 
upsurge in PM2.5 concentration leads to an increase of 1.1% COVID-19 
cases and 2.3% COVID-19 deaths, respectively. In a study conducted 
in the United States to understand the relationship between air pollution 
and COVID-19 mortality, Wu et al. (2021) found that a 1 μg/m3 increase 
in PM2.5 is related to an 8% increase in COVID-19 mortality. COVID-19 
mortality counts for over 3000 counties across the United States were 
obtained for this study (representing 98% of the population). 

Next, we concentrate on state-wise characteristics and evaluate each 
state’s estimates (see Table A2 in Appendix A). The results highlight that 
every state responds differently to positive and negative shocks. The 
asymmetric short-run impact has been found in Madhya Pradesh, Gujrat, 
Tamil Nadu, Uttar Pradesh, Telangana, and Maharashtra states, speci-
fying a significant influence of PM2.5 pollution on the transmissibility of 
coronavirus. This finding indicates that these states are more vulnerable 
to short-run shocks on PM2.5 pollution. Similarly, Delhi, Karnataka, 
Andhra Pradesh, and West Bengal states also exhibit asymmetric short- 
run effects and the negative shock on PM2.5 emissions. Each state 

responds differently to short-run positive and negative shocks because of 
the different air pollution levels in each state. The short-run analysis also 
confirms the heterogeneity in the selected states and validates the 
asymmetric relationship between PM2.5 pollution and COVID-19 cases. 

4.4. Results of asymmetric panel causality 

Examining asymmetric causality will likely lead to accurate results if 
the variables respond differently to positive and negative shocks. 
Therefore, we performed Hatemi-J’s (2011) test to examine asymmetric 
causality. Findings are shown in Table A3 (see Appendix A), specifying 
that the positive shocks on PM2.5 pollution Granger-cause positive 
shocks on COVID19 cases. An asymmetric causality is also running from 
the negative shocks of PM2.5 to the negative shock of COVID-19 cases. It 
implies that positive shocks of PM2.5 emissions escalate the intensity of 
the COVID-19 case, while the negative shocks of PM2.5 emissions 
decrease the COVID-19 cases. Pata (2020) used an asymmetric Fourier 
causality test to investigate the effect of the COVID-19 epidemic on 
PM2.5 emissions in USA states. According to study findings, positive 
shocks in COVID-19 fatalities negatively affect PM2.5 levels in San Diego, 
New York, and San Jose states. While positive shocks in COVID-19 result 
in negative changes in PM2.5 levels in Chicago, Los Angeles, Phoenix, 
San Antonio, San Jose, and Philadelphia states, respectively. 

5. Conclusions and policy implications 

This paper systematically explores the nexus between air pollution 
(PM2.5) and COVID-19 in the affected Indian states. We performed the 
asymmetric relationship between variables using the newly introduced 
“Hidden Panel Cointegration test of Hatemi-J (2020)" and the NPARDL 
model. The subsequent analyses of individual states endorse the het-
erogeneous effect of PM2.5 on coronavirus among the selected Indian 
states. The empirical findings from the NPARDL model verify the 
asymmetric relationship between PM2.5 and COVID-19 cases. Research 
results expose that positive shocks of PM2.5 concentrations escalate 
COVID-19 spread. In particular, a 1% change in the positive shocks of 
PM2.5 pollution increases the COVID-19 cases by 0.439%. The Hatemi-J’ 
(2011) asymmetric causality analysis also suggests positive shocks on 
PM2.5 pollution Granger-cause positive shocks on COVID19 cases. An 
asymmetric causality is also running from the negative shocks of PM2.5 
pollution to the negative shock of COVID-19 cases. 

Research findings verify that a higher level of environmental 
contamination in heavily polluted regions cause respiratory syndromes, 
weakens the residents’ immunity, and influence the susceptibility of 
COVID-19. The magnitude of these negative consequences on humans 
and the environment varies across states, primarily due to the diverse 
demographic features, social distancing, and lockdown steps imple-
mented by the Indian states. Other probable explanations for the spread 
of COVID-19 in these states include the lack of adequate healthcare fa-
cilities and a failure to follow anticipated human actions during the 
pandemic, such as adherence to face mask usage, sanitizing, social 
stratification, and separation from affected people. 

Environmental pollution is a result of human actions, leading to 
environmental degradation. It is expected that public awareness of 
environmental problems will increase due to the COVID-19 pandemic. 
However, an abrupt growth in global unemployment is deforming the 
socio-economic harmony and is very harmful to our lives, communities, 
and economies due to coronavirus. It is crucial to create employment 
opportunities and sustainably develop the healthcare infrastructure, 
which might help provide the groundwork for a sustainable recovery, 
particularly if additional government promises to environmental sus-
tainability are made. Numerous initiatives have been created in devel-
oping economies like Nepal and Pakistan to assist the government’s 
“Green Wagers Scheme” for monetary support and green employment 
creation through tree plantation and ecosystem restoration. Addition-
ally, the forest society may contribute by collecting timber and other 
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resources responsibly, focusing on forestry initiatives. 
The findings of this study have several practical policy recommen-

dations. Air pollution indicators are critical and vital when it comes to 
avoiding and forecasting the development of the coronavirus. Air 
pollution has a substantial impact on coronavirus propagation and is 
critical for developing mitigation plans that will help forecast and con-
trol the emergence of future outbreaks. Energy generation from fossil 
fuels is the primary cause of air pollution. Other causes include gasoline- 
fuelled vehicles, residential and industrial heating. Therefore, India 
should accelerate its transition from fossil fuels to renewable energy by 
reinforcing public health policy. Likewise, if this epidemic persists in 
humans for an extended period of time, the governments should 
implement anti-epidemic strategies. Globally, quick action is required to 
halt climate degradation, alter ecosystems, and reorganize international 
collaboration. This is also a fact that individuals spend most of their time 
indoors, where pollutants’ concentrations are sometimes higher than 
outdoors. Consequently, it is critical to maintain a healthy home envi-
ronment. Using an air purifier can be beneficial in this endeavour, as 
indoor air quality has been shown to significantly influence the trans-
mission of viral infections such as COVID19 (Fermo et al., 2021). Given 
the crucial nature of better indoor air quality to contain the spread of the 
COVID-19 pandemic, air purifier devices could be successfully applied in 
particularly crowded areas and critical environments. Hospitals are 
obliged to develop a self-protocol to improve patient management 
during the COVID-19 pandemic by considering existing logistics and 
resources (Rakhsha et al., 2020). However, it is also true that the current 
and future epidemics cannot be treated alone by medical research and 
practice; multidisciplinary scientific research based on environmental 
and sustainable science must be done in this regard. 

The study also has some limitations. Firstly, we only focused on In-
dia’s top ten infected states and did not consider other regions. Secondly, 
we only found the effect of PM2.5 on COVID-19 cases and neglected other 
air pollutants. Thirdly, we did not examine the influence of lockdown on 
atmospheric pollution and its linkage with sustainable development. 
Finally, there are also significant confounding factors associated with air 
pollution and COVID-19. The transmissibility of virus varies signifi-
cantly among states, depending on (i) population density, (ii) socio- 
economic composition, (iii) access to healthcare, (iv) virus introduc-
tion time, and (v) the implementation of epidemic prevention policies (i. 
e., social distancing, mask-wearing obligations, testing policies, or 
lockdown restrictions. All of these above-mentioned factors have an 
effect on the disease’s dynamics, which can be assessed by daily new 
cases. Therefore, subsequent researchers should include these potential 
confounders to strengthen their analyses. 
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