Catalytic effect of [trans-Cu(μ -OH)(μ -dmpz)]₆ on the thermal decomposition of ammonium perchlorate

- Molina V.ª,
- Arroyo J.L.^b,
- MacLeod-Carey D.^a,
- Muñoz-Castro A.ª,
- Morales-Verdejo C.°

Abstract

Spatial race under low oxygen conditions requires solid mild propellants to be used. Therefore, we study the catalytic effect of the previously reported [trans-Cu(μ -OH)(μ -dmpz)]₆ complex on the thermal decomposition of ammonium perchlorate by a differential scanning calorimetry (DSC) technique. The copper compound causes a decrease of ammonium perchlorate's decomposition temperature to 372.5 °C, consequently increasing the heat release by 576 J·g⁻¹, when used in a 5 wt% as burning rate (BR) catalyst. It must be remarked that, the [trans-Cu(μ -OH)(μ -dmpz)]₆ complex presents a superior performance as BR catalyst when compared to nano-metallic oxides. This Cu^(II) compound modifies the decomposition mechanism of ammonium perchlorate, providing the necessary O₂ to accelerate the overall burning process paving the way to the study of copper pyrazolate complexes as BR catalysts. © 2021 Elsevier Ltd

Author keywords

Ammonium perchlorate; Burning rate catalysts; Cluster