Zinc Stannate as anode and Pyrrolidinium-Based Room Temperature Ionic Liquid as electrolyte for Lithium-ion Cells

Quezada, D. Honores, J. Ruiz-León, D.

Abstract

With the aim to design safer batteries, pyrrolidinium-based room temperature ionic liquids (RTIL) have been used as electrolytes in Li-ion batteries using zinc stannate as the anodic material. The lithium diffusion coefficients were calculated using Electrochemical Impedance Spectroscopy (EIS) data and were 2.37 x 10^{-12} cm²s⁻¹ for MPPyrTFSI and 1.29 x 10^{-12} cm²s⁻¹ for BMPyrTFSI. The performance of the device strongly depended on the cation chemical structure, yielding different specific capacity values of 306.3 mAhg⁻¹ for BMPyrTFSI and 269.2 mAhg⁻¹ for MPPyrTFSI.

Author keywords Ionic Liquids Lithium-ion cells Zinc Stannate