Aromaticity Survival in Hydrofullerenes: The Case of $C_{66}H_4$ with Its π -Aromatic Circuits

Chen, D. Szczepanik, D.W. Zhu, J. Muñoz-Castro, A. Solà, M.

Abstract

The isolated-pentagon rule (IPR) is a determining structural feature that accounts for hollow fullerene stabilization and properties related to C_n ($n \ge 60$) cages. The recent characterization of an unprecedented non-IPR hydrofullerene, C_{2v} $C_{66}H_4$, bearing two heptagons with adjacent fused-pentagon motifs, largely dismisses this feature. Herein, employing DFT calculations, the ^{13}C NMR spectroscopy and aromatic behavior of C_{2v} $C_{66}H_4$ are explored. The results show the presence of three π -aromatic circuits at the bottom boat section of $C_{66}H_4$, indicating the unique features of this hydrofullerene in comparison to those of pristine C_{60} . In addition, under specific orientations of the external field, certain π -aromatic circuits are enabled, resulting in a more aromatic fullerene than that of C_{60} , but lower than that of the spherical aromatic C_{60} fulleride. Notably, under a field aligned with the saturated carbon atoms, nonaromatic characteristics are exposed. This reveals that spherical-like cages can involve a complex magnetic response that heavily depends on the orientation of the applied field.

Author keywords Aromaticity density functional calculations fullerenes hydrofullerenes ring currents