On the ¹³C-NMR chemical shift anisotropy patterns and aromatic character in strained fullerenes: Computational analysis of D_{6h}/D_{2d} -C₃₆ fullerene

Guajardo-Maturana, R. Rodríguez-Kessler, P.L. MacLeod-Carey, D. Muñoz-Castro, A.

Abstract

The NMR characterization of small C_{36} hollow fullerene exposes a stable cage with structural features based on its strained curved π -surface in a D_{6h} -symmetry. Our results indicate that planar-like aromatic properties of the D_{6h} - C_{36} isomer decrease to a nonaromatic cage for D_{2d} - C_{36} after Stone-Wales transformation of an equatorial [6.6] bond. This is given by the decrease of conjugation in the strained π -surface after Stone-Wales transformation. Calculated nuclear shielding shows that the main shielding component is always oriented perpendicularly to the cage π -surface despite the larger curvature degree, as a result of the sp² character of carbon atoms, resembling C_{60} . Moreover, the D_{6h} - and D_{2d} - C_{36} cages differ in their charge distribution properties, leading to charge accumulation in the strained cap of the former that leads to a polymerization-prone cage, which contrasts with that expected for the D_{2d} structure. Hence, structural rearrangements of these non-Hirsch aromatic fullerenes show that their inherent global behavior requires considering the structural features besides electron counting rules.

Author keywords Aromatic Fullerene magnetic field NMR