Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise

Background: Circulating microRNAs (c-miRNAs) are mediators of intercellular communication with great potential as cardiac biomarkers. The analysis of c-miRNAs in response to physiological stress, such as exercise, would provide valuable information for clinical practice and a deeper understanding of the molecular response to physical activity. Here, we analysed for the first time the acute exercise response of c-miRNAs reported as biomarkers of cardiac disease in a well-characterized cohort of healthy active adults. Methods: Blood samples were collected immediately before and after (0 h, 24 h, 72 h) a 10-km race, a half-marathon (HM) and a marathon (M). Serum RNA from 10-km and M samples was extracted and a panel of 74 miRNAs analysed using RT-qPCR. c-miRNA response was compared with a panel of nine cardiac biomarkers.

carried out. Results: Serum levels of all cardiac biomarkers were upregulated in a dose-dependent manner in response to exercise, even in the absence of symptoms or signs of cardiac injury. A deregulation in the profiles of 5 and 19 c-miRNAs was observed for 10-km and M, respectively. Each race induced a specific qualitative and quantitative alteration of c-miRNAs implicated in cardiac adaptions. Supporting their discriminative potential, a number of c-miRNAs previously associated with cardiac disease were undetectable or stable in response to exercise. Conversely, ?pseudo-disease? signatures were also observed. Conclusions: c-miRNAs may be useful for the management of cardiac conditions in the context of acute aerobic exercise. Translational aspects of the work: Circulating microRNAs could offer incremental diagnostic value to established and emerging cardiac biomarkers, such as hs-cTnT or NT-proBNP, in those patients with cardiac dysfunction symptoms after an acute bout of endurance exercise. Furthermore, circulating miRNAs could also show ?pseudo-disease? signatures in response to acute exercise. Clinical practitioners should be aware of the impact caused by exercise in the interpretation of miRNA data. © 2018 Elsevier B.V.

Biomarkers

Circulating microRNAs

Exercise

Heart disease

amino terminal pro brain natriuretic peptide

copeptin

creatine kinase

creatine kinase MB

fatty acid binding protein 3

galectin 3

lactate dehydrogenase

microRNA

myoglobin
troponin T
biological marker
circulating microRNA
microRNA
MIRN103A2 microRNA, human
MIRN375 microRNA, human
adult
aerobic exercise
Article
diagnostic value
echocardiography
heart disease
human
marathon runner
normal human
priority journal
reverse transcription polymerase chain reaction
blood
cardiac muscle
classification
endurance
exercise
female
heart disease
male

metabolism
middle aged
physiological stress
physiology
time factor
Adult
Biomarkers
Circulating MicroRNA
Exercise
Female
Healthy Volunteers
Heart Diseases
Humans
Male
MicroRNAs
Middle Aged
Myocardium
Physical Endurance
Stress, Physiological
Time Factors