Coactivation index of children with congenital upper limb reduction deficiencies before and after using a wrist-driven 3D printed partial hand prosthesis

Zuniga J.M.

Dimitrios K.

Peck J.L.

Srivastava R.

Pierce J.E.

Dudley D.R.

Salazar D.A.

Young K.J.

Knarr B.A.

Background: Co-contraction is the simultaneous activation of agonist and antagonist muscles that produces forces around a joint. It is unknown if the use of a wrist-driven 3D printed transitional prostheses has any influence on the neuromuscular motor control strategies of the affected hand of children with unilateral upper-limb reduction deficiencies. Thus, the purpose of the current investigation was to examine the coactivation index (CI) of children with congenital upper-limb reduction deficiencies before and after 6 months of using a wrist-driven 3D printed partial hand prosthesis. Methods: Electromyographic activity of wrist flexors and extensors (flexor carpi ulnaris and extensor digitorum) was recorded during maximal voluntary contraction of the affected and non-affected wrists. Co-contraction was calculated using the coactivation index and was expressed as percent activation of antagonist over agonist. Nine children (two girls and seven boys, 6 to 16 years of age) with congenital upper-limb deficiencies participated in this study and were fitted with a wrist-driven 3D printed prosthetic hand. From the nine children, five (two girls and three boys, 7 to 10 years of age) completed a second visit after using the wrist-driven 3D printed partial hand prosthesis for 6 months. Results: Separate two-way repeated measures ANOVAs were performed to analyze the coactivation index and strength data. There was a significant main effect for hand with

the affected hand resulting in a higher coactivation index for flexion and extension than the non-affected hand. For wrist flexion there was a significant main effect for time indicating that the affected and non-affected hand had a significantly lower coactivation index after a period of 6 ne coactivation iction in prove prosthetic

months. Conclusion: The use of a wrist-driven 3D printed hand prosthesis lowered the
index by 70% in children with congenital upper limb reduction deficiencies. This redu
coactivation and possible improvement in motor control strategies can potentially imp
rehabilitation outcomes. © 2018 The Author(s).
Additive manufacturing
Arm
Biomechanics
Computer-aided design
Custom-made prostheses
Hand
Motor control
Pediatric
Reaching
adolescent
Article
child
clinical article
coactivation index
congenital upper limb reduction deficiency
controlled study
electromyography
extensor digitorum muscle

female

