Antidiabetic potential of saffron and its active constituents Yaribeygi H. Zare V. Butler A.E. Barreto G.E. Sahebkar A. The prevalence of diabetes mellitus is growing rapidly worldwide. This metabolic disorder affects many physiological pathways and is a key underlying cause of a multitude of debilitating complications. There is, therefore, a critical need for effective diabetes management. Although many synthetic therapeutic glucose-lowering agents have been developed to control glucose homeostasis, they may have unfavorable side effects or limited efficacy. Herbal-based hypoglycemic agents present an adjunct treatment option to mitigate insulin resistance, improve glycemic control and reduce the required dose of standard antidiabetic medications. Saffron (Crocus sativus L.), whilst widely used as a food additive, is a natural product with insulin-sensitizing and hypoglycemic effects. Saffron contains several bioactive? carotenes, which exert their pharmacological effects in various tissues without any obvious side effects. In this study, we discuss how saffron and its major components exert their hypoglycemic effects by induction of insulin sensitivity, improving insulin signaling and preventing ?-cell failure, all mechanisms combining to achieve better glycemic control. © 2018 Wiley Periodicals, Inc. crocin Crocus sativus

diabetes mellitus

insulin signal transduction

inflammation

oxidative stress

saffron

safranal
antidiabetic agent
glucose transporter 4
herbaceous agent
nutraceutical
antidiabetic agent
biological marker
insulin
plant extract
antidiabetic activity
cell membrane
chemical composition
clinical trial (topic)
Crocus sativus
drug effect
glucose transport
glycemic control
human
inflammation
insulin sensitivity
insulin signaling
nonhuman
oxidative stress
pancreas islet beta cell
pancreas islet cell function
priority journal

protein expression
protein localization
Review
animal
blood
chemistry
Crocus
diabetes mellitus
drug effect
glucose blood level
insulin resistance
isolation and purification
metabolism
pathophysiology
Animals
Biomarkers
Blood Glucose
Crocus
Diabetes Mellitus
Humans
Hypoglycemic Agents
Insulin
Insulin Resistance
Insulin-Secreting Cells
Plant Extracts