Increased mammalian target of rapamycin signaling contributes to the accumulation of protein oxidative damage in a mouse model of down's syndrome

Tramutola A.

Lanzillotta C.

Arena A.

Barone E.

Perluigi M.

Di Domenico F.

Background: Neurodegenerative diseases are characterized by increased levels of oxidative stress and an altered mammalian target of rapamycin (mTOR)/autophagy axis; however, the mutual relationship between these two events is controversial. Previous studies in Down's syndrome (DS) and Alzheimer's disease (AD) suggested that the accumulation of protein oxidative damage results from the increased free radical production, mainly related to metabolic alterations, mitochondrial degeneration and amyloid-? deposition, and aberrant activity of protein degradative systems. Summary: This study analyzed mTOR signaling in Ts65Dn mice, a model of DS, at 6 and 12 months of age compared with euploid mice showing the early aberrant hyperphosphorylation of mTOR coupled with the reduction of autophagosome formation. Moreover, the evaluation of protein oxidation shows an increase in protein nitration and protein-bound 4-hydroxynonenal in 12-month-old Ts65Dn mice suggesting the potential involvement of altered autophagy in the buildup of protein oxidative damage. In addition, data obtained on cell culture support the protective role of autophagy in reducing protein oxidation. Key Messages: Overall, this study provides further evidence for the role of mTOR hyperactivation and reduced autophagy in the accumulation of protein oxidative damage during DS and AD pathologies. Background: Effective therap. © 2015 S. Karger AG, Basel.

Alzheimer's disease

Autophagy
Down's syndrome
Mammalian target of rapamycin
Protein oxidation
4 hydroxynonenal
mammalian target of rapamycin
rapamycin
MTOR protein, human
mTOR protein, mouse
target of rapamycin kinase
animal cell
animal experiment
animal model
autophagosome
autophagy
cell viability
Conference Paper
controlled study
Down syndrome
female
male
mouse
MTT assay
neuroblastoma cell
nonhuman

oxidation

oxidative stress
priority journal
protein phosphorylation
reciprocal chromosome translocation
signal transduction
trisomy
Western blotting
animal
C3H mouse
C57BL mouse
disease model
Down syndrome
hippocampus
human
metabolism
oxidation reduction reaction
phosphorylation
signal transduction
transgenic mouse
tumor cell line
Animals
Blotting, Western
Cell Line, Tumor
Disease Models, Animal
Down Syndrome
Hippocampus

Humans
Mice, Inbred C3H
Mice, Inbred C57BL
Mice, Transgenic
Oxidation-Reduction
Phosphorylation
Signal Transduction
Sirolimus
TOR Serine-Threonine Kinases