It's all about tau

ubiquitin

it's all about tau
Tapia-Rojas C.
Cabezas-Opazo F.
Deaton C.A.
Vergara E.H.
Johnson G.V.W.
Quintanilla R.A.
Tau is a protein that is highly enriched in neurons and was originally defined by its ability to bind and
stabilize microtubules. However, it is now becoming evident that the functions of tau extend beyond
its ability to modulate microtubule dynamics. Tau plays a role in mediating axonal transport, synaptic
structure and function, and neuronal signaling pathways. Although tau plays important physiological
roles in neurons, its involvement in neurodegenerative diseases, and most prominently in the
pathogenesis of Alzheimer disease (AD), has directed the majority of tau studies. However, a
thorough knowledge of the physiological functions of tau and its post-translational modifications
under normal conditions are necessary to provide the foundation for understanding its role in
pathological settings. In this review, we will focus on human tau, summarizing tau structure and
organization, as well as its posttranslational modifications associated with physiological processes.
We will highlight possible mechanisms involved in mediating the turnover of tau and finally discuss
newly elucidated tau functions in a physiological context. © 2018 Elsevier Ltd
Axonal transport
Dendrites
Microtubules
Posttranslational modifications
Tau
tau protein

tau protein
alternative RNA splicing
Alzheimer disease
autophagy
glycation
human
isomerization
microtubule
mitochondrial dynamics
nerve fiber transport
nitration
oligodendroglia
physiological process
priority journal
protein cleavage
protein degradation
protein glycosylation
protein methylation
protein phosphorylation
protein processing
Review
signal transduction
stop codon
turnover rate
brain
chemistry

physiology	,
Brain	

Humans

tau Proteins