Retention and mechanical behavior of attachment systems for implant-retained auricular prostheses

Sigua-Rodriguez E.A.

Goulart D.R.

Santos Z.T.

Alvarez-Pinzon N.

Olate S.

De Albergaria-Barbosa J.R.

Objective: Auricular prostheses are artificial substitutes for facial defects. The retention of these has often been a problem. This study aimed to evaluate the mechanical behavior of 3 retained auricular prosthetic connections when submitted to a mechanical cycling test. Materials and Methods: Twelve samples with installed implants were obtained and divided into 3 groups according to their retention system with 4 samples in each group. I: bar-clip system; II: magnet system; and III: ball/o-ring system. Each of samples was submitted to the pull-out test during 3240 cycles (f=0.5 Hz) to determine its tensile strength. The mechanical cycling test was performed using the servo-hydraulic machine MTS 810-Flex Test 40 (Eden Prairie, MN) that had a 2.5mm shift at a 10 mm/s velocity. The retaining strength for each of the samples was obtained at 7 intervals. Results: The tensile strength for the group retained by the bar-clip system (29.60 N) was higher with statistically significant difference (P<0.05) when compared with the group retained by the ball/oring system (9.41 N) and magnets system (8.61 N) for all periods assessed. The ball/o-ring system showed loss of retention during the fatigue test (Kruskal-Wallis, chi-squared=17.28; P<0.01). Conclusions: The evaluated systems showed a tensile strength compatible with the clinical use and no fractures of the components were observed.

Maxillofacial prosthesis

Prosthesis retention

Tensile strength

biomechanics

bone implant interface

comparative study

external ear

human

procedures

prostheses and orthoses

prosthesis complication

prosthesis design

prosthesis fixation

surgery

tensile strength

Biomechanical Phenomena

Bone-Implant Interface

Ear, External

Humans

Prostheses and Implants

Prosthesis Design

Prosthesis Failure

Prosthesis Retention

Tensile Strength