Discovery of novel TASK-3 channel blockers using a pharmacophore-based virtual screening

Ramírez D.		
Concha G.		
Arévalo B.		
Prent-Peñaloza L.		
Zúñiga L.		
Kiper A.K.		
Rinné S.		
Reyes-Parada M.		
Decher N.		
González W.		

Caballero J.

TASK-3 is a two-pore domain potassium (K2P) channel highly expressed in the hippocampus, cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers could influence the pharmacological treatment of cancer and several neurological conditions. In the present work, we searched for novel TASK-3 blockers by using a virtual screening protocol that includes pharmacophore modeling, molecular docking, and free energy calculations. With this protocol, 19 potential TASK-3 blockers were identified. These molecules were tested in TASK-3 using patch clamp, and one blocker (DR16) was identified with an IC50 = 56.8 ± 3.9 μM. Using DR16 as a scaffold, we designed DR16.1, a novel TASK-3 inhibitor, with an IC50 = 14.2 ± 3.4 μM. Our finding takes on greater relevance considering that not many inhibitory TASK-3 modulators have been reported in the scientific literature until today. These two novel TASK-3 channel inhibitors (DR16 and DR16.1) are the first compounds found using a pharmacophore-based virtual screening and rational drug design protocol. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Drug design
Lead optimization
Pharmacophore-based virtual screening
TASK channels blockers
TASK-3 channel
potassium channel blocking agent
KCNK9 protein, human
potassium channel blocking agent
tandem pore domain potassium channel
Article
binding site
carbon nuclear magnetic resonance
controlled study
crystal structure
Fourier transform infrared spectroscopy
high throughput screening
human
human cell
hydrogen bond
mass spectrometry
molecular docking
molecular dynamics
patch clamp technique
pharmacophore
protein conformation
protein expression

proton nuclear magnetic resonance
stereochemistry
drug design
HEK293 cell line
molecular docking
Drug Design
HEK293 Cells
Humans
Molecular Docking Simulation
Potassium Channel Blockers
Potassium Channels, Tandem Pore Domain