Phosphorylated tau potentiates A?-induced mitochondrial damage in mature neurons

Quintanilla R.A.

von Bernhardi R.

Godoy J.A.

Inestrosa N.C.

Johnson G.V.W.

Tau phosphorylated at the PHF-1 epitope (\$396/\$404) is likely involved in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which tau phosphorylated at these sites negatively impacts neuronal functions are still under scrutiny. Previously, we showed that expression of tau truncated at D421 enhances mitochondrial dysfunction induced by A? in cortical neurons. To extend these findings, we expressed tau pseudo-phosphorylated at S396/404 (T42EC) in mature and young cortical neurons and evaluated different aspects of mitochondrial function in response to A?. Expression of T42EC did not induce significant changes in mitochondrial morphology, mitochondrial length, or mitochondrial transport, compared to GFP and full-length tau. However, T42EC expression enhanced A?-induced mitochondrial membrane potential loss and increased superoxide levels compared to what was observed in mature neurons expressing full-length tau. The same effect was observed in mature neurons that expressed both pseudo-phosphorylated and truncated tau when they were treated with A?. Interestingly, the mitochondrial failure induced by A? in mature neurons that expressed T42EC, was not observed in young neurons expressing T42EC. These novel findings suggest that phosphorylated tau (PHF-1 epitope) enhances A?-induced mitochondrial injury, which contributes to neuronal dysfunction and to the pathogenesis of AD. © 2014 Elsevier Inc.

Alzheimer's disease

Mitochondria

Neuronal dysfunction

PHF-1
Tau
amyloid precursor protein
green fluorescent protein
presenilin 1
superoxide
tau protein
animal
animal embryo
brain cortex
C57BL mouse
cell culture
chemically induced
cytology
disorders of mitochondrial functions
drug effects
genetic transfection
genetics
metabolism
mitochondrial membrane potential
mouse
mutation
nerve cell
phosphorylation
rat
transgenic mouse

Amyloid beta-Protein Precursor
Animals
Cells, Cultured
Cerebral Cortex
Embryo, Mammalian
Green Fluorescent Proteins
Membrane Potential, Mitochondrial
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mitochondrial Diseases
Mutation
Neurons
Phosphorylation
Presenilin-1
Rats
Superoxides
tau Proteins
Transfection