chemo/baro-denervated rats treated with lipopolysaccharide Nardocci G. Martin A. Abarzúa S. Rodríguez J. Simon F. Reyes E.P. Acuña-Castillo C. Navarro C. Cortes P.P. Fernández R. Sepsis progresses to multiple organ dysfunction (MOD) due to the uncontrolled release of inflammatory mediators. Carotid chemo/baro-receptors could play a protective role during sepsis. In anesthetized male rats, we measured cardiorespiratory variables and plasma TNF-?, glucocorticoids, epinephrine, and MOD marker levels 90. min after lipopolysaccharide (LPS) administration in control (SHAM surgery) and bilateral carotid chemo/baro-denervated (BCN) rats. BCN prior to LPS blunted the tachypneic response and enhanced tachycardia and hypotension. BCN-LPS rats also showed blunted plasma glucocorticoid responses, boosted epinephrine and TNF-? responses, and earlier MOD onset with a lower survival time compared with SHAM-LPS rats. Consequently, the complete absence of carotid chemo/baro-sensory function modified the neural, endocrine and inflammatory responses to sepsis. Thus, carotid chemo/baro-receptors play a protective role in sepsis. © 2014 Elsevier B.V. Bilateral carotid/sinus neurotomy

Sepsis progression to multiple organ dysfunction in carotid

Carotid body

Epinephrine

Glucocorticoids
Multiple organ dysfunction
Sepsis
Tissue damage
TNF-?
adrenalin
cortisone
glucocorticoid
hydrocortisone
lipopolysaccharide
tumor necrosis factor alpha
adrenalin
glucocorticoid
lipopolysaccharide
tumor necrosis factor alpha
animal cell
animal experiment
animal model
Article
bilateral carotid sinus neurotomy
breathing rate
cardiovascular response
corticosterone blood level
death
disease severity
heart rate

hypotension
male
multiple organ failure
nonhuman
protein blood level
rat
risk factor
sepsis
surgical technique
survival time
systolic blood pressure
tachycardia
tachypnea
tidal volume
tissue injury
treatment response
animal
blood
breathing
carotid body
chemically induced
complication
denervation
drug effects
metabolism
multiple organ failure

nonparametric test
physiology
pressoreceptor
procedures
sepsis
Sprague Dawley rat
survival
toxicity
Animals
Carotid Body
Denervation
Epinephrine
Glucocorticoids
Heart Rate
Lipopolysaccharides
Male
Multiple Organ Failure
Pressoreceptors
Rats
Rats, Sprague-Dawley
Respiration
Sepsis
Statistics, Nonparametric
Survival Analysis
Tidal Volume
Tumor Necrosis Factor-alpha