Oxidative stress augments chemoreflex sensitivity in rats exposed to chronic intermittent hypoxia

Morgan B.J.
Bates M.L.
Rio R.D.

Dopp J.M.

Wang Z.

Chronic exposure to intermittent hypoxia (CIH) elicits plasticity of the carotid sinus and phrenic nerves via reactive oxygen species (ROS). To determine whether CIH-induced alterations in ventilation, metabolism, and heart rate are also dependent on ROS, we measured responses to acute hypoxia in conscious rats after 14 and 21 d of either CIH or normoxia (NORM), with or without concomitant administration of allopurinol (xanthine oxidase inhibitor), combined allopurinol plus losartan (angiotensin II type 1 receptor antagonist), or apocynin (NADPH oxidase inhibitor). Carotid body nitrotyrosine production was measured by immunohistochemistry. CIH produced an increase in the ventilatory response to acute hypoxia that was virtually eliminated by all three pharmacologic interventions. CIH caused a robust increase in carotid body nitrotyrosine production that was greatly attenuated by allopurinol plus losartan and by apocynin but unaffected by allopurinol. CIH caused a decrease in metabolic rate and a reduction in hypoxic bradycardia. Both of these effects were prevented by allopurinol, allopurinol plus losartan, and apocynin. © 2016 Elsevier B.V.

Antioxidant

Chemoreceptor

Intermittent hypoxia

Reactive oxygen species

3 nitrotyrosine

allopurinol

apocynin

heart rate
immunohistochemistry
long term exposure
male
metabolic rate
nonhuman
oxidative stress
priority journal
rat
analogs and derivatives
analysis of variance
animal
blood
body weight
breathing
carotid sinus
chemoreceptor cell
drug effects
hypoxia
metabolism
oxidative stress
oxygen consumption
pathology
pathophysiology
physiology
plethysmography

regression analysis
Sprague Dawley rat
tidal volume
time factor
Acetophenones
Allopurinol
Analysis of Variance
Animals
Anti-Arrhythmia Agents
Antioxidants
Body Weight
Carbon Dioxide
Carotid Sinus
Catecholamines
Chemoreceptor Cells
Free Radical Scavengers
Heart Rate
Hypoxia
Losartan
Male
Oxidative Stress
Oxygen Consumption
Plethysmography
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species

Respiration
Tidal Volume
Time Factors
Tyrosine

Regression Analysis