Effects of estrogens and androgens on mitochondria under normal and pathological conditions

Mol	haje	∍ri N	٨.
-----	------	-------	----

Martín-Jiménez C.

Barreto G.E.

Sahebkar A.

Several lines of evidence have suggested that mitochondrial dysfunction plays a key role in neurodegeneration. The mitochondrial function is a potential target for steroid hormones, which could exert protective activities in the brain and other tissues. The decrease of some sex steroids with aging has been associated with deleterious effects on brain function and progression to neurodegenerative diseases. Recent in vitro and in vivo evidence provides the basis for this review on the interplay of sex steroids and mitochondrial defects in preventing or improving pathological events in the central nervous system (CNS). In this article, the role of mitochondria under normal and pathological states will be discussed. In addition, we will review studies conducted on steroidal compounds, which have neuroprotective effects targeting mitochondria. It has been shown that these compounds could exert both direct and indirect effects on mitochondria that promote or preserve mitochondrial function under pathological circumstances, such as acute brain injury and chronic neurodegeneration. © 2019 Elsevier Ltd

Acute

Androgens

Brain

diseases

Estrogens

injury

Mitochondria

Neurodegenerative

androgen
estradiol
estrogen
estrogen receptor alpha
estrogen receptor beta
raloxifene
tamoxifen
testosterone
tibolone
androgen
estrogen
neuroprotective agent
Alzheimer disease
amyotrophic lateral sclerosis
brain cell
brain injury
cell death
cerebrovascular accident
chronic disease
drug mechanism
energy yield
Friedreich ataxia
human
Huntington chorea
in vitro study
in vivo study

nerve degeneration
neurologic disease
nonhuman
Parkinson disease
priority journal
Review
animal
degenerative disease
drug effect
female
male
metabolism
mitochondrion
Androgens
Animals
Brain Injuries
Estrogens
Female
Humans
Male
Mitochondria
Nerve Degeneration
Neurodegenerative Diseases
Neuroprotective Agents

mitochondrion