Microplastics have lethal and sublethal effects on stream invertebrates and affect stream ecosystem functioning

López-Rojo N.

Pérez J.

Alonso A.

Correa-Araneda F.

Boyero L.

Microplastics (MPs) are contaminants of increasing concern due to their abundance, ubiquity and persistence over time. However, knowledge about MP distribution in fresh waters and their effects on freshwater organisms is still scarce, and there is virtually no information about their potential influence on ecosystem functioning. We used a microcosm experiment to examine the effects of MPs (fluorescent, 10-?m polystyrene microspheres) at different concentrations (from 0 to 103 particles mL?1) on leaf litter decomposition (a key process in stream ecosystems) and associated organisms (the caddisfly detritivore Sericostoma pyrenaicum), and the extent to which MPs were attached to leaf litter and ingested and egested by detritivores, thus assessing mechanisms of MP trophic transfer. We found that MPs caused detritivore mortality (which increased 9-fold at the highest concentration) but did not affect their growth. Analysis of fluorescence in samples suggested that MPs were rapidly ingested (most likely through ingestion of particles attached to leaf litter) and egested. Leaf litter decomposition was reduced as a result of increasing MP concentrations; the relationship was significant only in the presence of detritivores, but microbially-mediated decomposition showed a similar trend. Our findings provide novel evidence of harmful effects of MPs on aquatic insects and stream ecosystem functioning, and highlight the need for the standardization of methods in future experiments with MPs in order to allow comparisons and generalizations. © 2020 Elsevier Ltd

Detritivores

Ecotoxicity

Freshwater ecosystems
Litter decomposition
Plastic
Fluorescence
Microplastic
Plastics
Polystyrenes
Stream flow
Water
Detritivores
Ecosystem functioning
Ecotoxicity
Freshwater ecosystem
Leaf litter decomposition
Litter decomposition
Microcosm experiments
Polystyrene micro-sphere
Aquatic ecosystems
microsphere
polystyrene
concentration (composition)
decomposition
detritivory
ecosystem function
ecotoxicology
freshwater ecosystem

litter
plastic
sublethal effect
aquatic invertebrate
Article
controlled study
detritivore
ingestion
leaf litter
lethality
litter decomposition
microcosm
mortality rate
nonhuman
particle size
plastic waste
river ecosystem
stream (river)
Trichoptera
water pollution
animal
chemistry
drug effect
ecosystem
insect

invertebrate