Ionic gradient liposomes: Recent advances in the stable entrapment and prolonged released of local anesthetics and anticancer drugs

Fatima	М	Т
ı alıına	IVI	

Islam Z.

Ahmad E.

Barreto G.E.

Md Ashraf G.

Liposomes have established themselves as great pharmaceutical carriers over the past three decades. These phospholipid vesicular systems have undergone great technical advances including remote drug loading, targeted delivery, and combinatorial drug therapy. Ionic gradient liposomes (IGL) necessitates active loading of the drug in preformed vesicles exhibiting a transmembrane pH or ion gradient, with a low intra liposome pH (? 4-5), and a high outside pH (?7-8). It allows high drug encapsulation and prolonged release, particularly for amphipathic weak acids and weak bases. Most local anesthetics (Bupivacaine, Ropivacaine, Tetracaine, and others) have a pka in the range of 7-9, which makes them ideal candidates for their entrapment in IGL. The same is true for most anthracyclines which have great anti-tumor properties (Doxorubicin, Daunorubicin, Idarubicin, and others). Many FDA approved liposomal drugs utilise ion gradient for their encapsulation.

Considering their immense utility, we summarize here in this review, the recent contributions made by various research groups utilizing IGL, to accentuate the development of these carriers in drug delivery. This would possibly be helpful in carrying new investigations and further contributions in the optimization and advancements of new drugs for better therapeutics. © 2018 Elsevier Masson SAS

Anthracyclines

Controlled release

Drug delivery

Entrapment

Ionic gradient liposomes

Local anesthetics
рКа
Weak base
anthracycline
antineoplastic agent
ionic gradient liposome
liposome
local anesthetic agent
unclassified drug
antineoplastic agent
ion
liposome
local anesthetic agent
concentration ratio
drug concentration
drug delivery system
drug release
drug retention
encapsulation
human
lipophilicity
micelle
nonhuman
рН
physical chemistry
priority journal

Review
temperature sensitivity
delayed release formulation
pharmacology
Anesthetics, Local
Antineoplastic Agents
Delayed-Action Preparations
lons
Liposomes