Photocatalytic degradation of methylene blue by the Anderson-type polyoxomolybdates/TiO2 thin films

polyoxomoly bactor, more and mine
Diaz-Uribe C.E.
Rodríguez A.
Utria D.
Vallejo W.
Puello E.
Zarate X.
Schott E.
In the herein work, two Anderson-type polyoxomolybdates (containing Cu and Zn, respectively) were
synthesized and deposited on TiO2 thin films. The properties of the films were studied through
measurements of inductively coupled plasma optical emission spectrometry (ICP), Fourier transform
infrared spectroscopy (FT-IR) and absorption diffuse reflectance. The photodegradation of
methylene blue (MB) was studied under UV-irradiated on TiO2 and polyoxomolybdates/TiO2 thin
films in aqueous solution. Langmuir?Hinshelwood model was used to obtain kinetic information of
the photocatalytic process. Results showed that the polyoxomolybdates/TiO2 photocatalytic activity
is improved with respect to the TiO2 pure. The highlighted result was reached when copper
polyoxomolybdates/TiO2 film was employed and the efficiency in the MB photodegradation
improved from 18.8% to 40%. Furthermore, DFT and TD-DFT quantum mechanics calculations
were used to characterize the geometry and electronic structure of the compounds and to give a
rational explanation to the measured photocatalytic activity. © 2018 Elsevier Ltd
DFT
Heterogeneous photocatalysis
Polyoxometalate
Thin films
TiO2