Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: Focus on HNE-modified proteins in a mouse model of down syndrome

Di Domenico F.			
Tramutola A.			
Barone E.			
Lanzillotta C.			
Defever O.			
Arena A.			
Zuliani I.			
Foppoli C.			
lavarone F.			
Vincenzoni F.			
Castagnola M.			
Butterfield D.A.			
Perluigi M.			

Increasing evidences support the notion that the impairment of intracellular degradative machinery is responsible for the accumulation of oxidized/misfolded proteins that ultimately results in the deposition of protein aggregates. These events are key pathological aspects of ?protein misfolding diseases?, including Alzheimer disease (AD). Interestingly, Down syndrome (DS) neuropathology shares many features with AD, such as the deposition of both amyloid plaques and neurofibrillary tangles. Studies from our group and others demonstrated, in DS brain, the dysfunction of both proteasome and autophagy degradative systems, coupled with increased oxidative damage. Further, we observed the aberrant increase of mTOR signaling and of its down-stream pathways in both DS brain and in Ts65Dn mice. Based on these findings, we support the ability of intranasal rapamycin treatment (InRapa) to restore mTOR pathway but also to restrain oxidative stress

resulting in the decreased accumulation of lipoxidized proteins. By proteomics approach, we were able to identify specific proteins that showed decreased levels of HNE-modification after InRapa treatment compared with vehicle group. Among MS-identified proteins, we found that reduced oxidation of arginase-1 (ARG-1) and protein phosphatase 2A (PP2A) might play a key role in reducing brain damage associated with synaptic transmission failure and tau hyperphosphorylation. InRapa treatment, by reducing ARG-1 protein-bound HNE levels, rescues its enzyme activity and conceivably contribute to the recovery of arginase-regulated functions. Further, it was shown that PP2A inhibition induces tau hyperphosphorylation and spatial memory deficits. Our data suggest that InRapa was able to rescue PP2A activity as suggested by reduced p-tau levels. In summary, considering that mTOR pathway is a central hub of multiple intracellular signaling, we propose that InRapa treatment is able to lower the lipoxidation-mediated damage to proteins, thus representing a valuable therapeutic strategy to reduce the early development of AD pathology in DS population. © 2019 The Authors

Down syndrome

mTOR

Oxidative stress

Protein-bound HNE

Rapamycin

4 hydroxynonenal

arginase

arginase 1

mammalian target of rapamycin

phosphoprotein phosphatase 2A

rapamycin

tau protein

biological marker

proteasome
rapamycin
target of rapamycin kinase
Alzheimer disease
amnesia
animal experiment
animal model
animal tissue
antioxidant activity
Article
brain protection
controlled study
dose response
Down syndrome
enzyme activity
enzyme inhibition
female
lipid peroxidation
male
mouse
mouse model
mTOR signaling
nonhuman
oxidation
oxidative stress
priority journal

protein analysis
protein phosphorylation
proteomics
spatial memory
synaptic transmission
treatment duration
animal
autophagy
disease model
drug effect
intranasal drug administration
metabolism
procedures
signal transduction
Administration, Intranasal
Animals
Autophagy
Biomarkers
Disease Models, Animal
Down Syndrome
Female
Male
Mice
Oxidative Stress
Proteasome Endopeptidase Complex
Proteomics

Signal Transduction

Sirolimus

TOR Serine-Threonine Kinases