Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc

\sim	uesta	
	IDCTO	/\

Viña E.

Cabo R.

Vázquez G.

Cobo R.

García-Suárez O.

García-Cosamalón J.

Vega J.A.

The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity.

Acid-sensing ion channel 2

Degenerate intervertebral disc
Human intervertebral disc
Neurotrophin receptor TrkB
TrkB-deficient mice
acid sensing ion channel
ASIC2 protein, human
membrane protein
protein tyrosine kinase
tropomyosin-related kinase-B, human
aged
animal
female
genetics
human
intervertebral disk
intervertebral disk degeneration
knockout mouse
male
metabolism
middle aged
mouse
pathology
Acid Sensing Ion Channels
Aged
Animals
Female

Humans
Intervertebral Disc
Intervertebral Disc Degeneration
Male
Membrane Glycoproteins
Mice
Mice, Knockout
Middle Aged
Protein-Tyrosine Kinases