Multifunctional nanocarriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies

Cafferata I	E.A.
-------------	------

Alvarez C.

Diaz K.T.

Maureira M.

Monasterio G.

González F.E.

Covarrubias C.

Vernal R.

Periodontitis is an inflammatory disease, in which the host immuno-inflammatory response against the dysbiotic subgingival biofilm leads to the breakdown of periodontal tissues. Most of the available treatments seem to be effective in the short-term; nevertheless, permanent periodical controls and patient compliance compromise long-term success. Different strategies have been proposed for the modulation of the host immune response as potential therapeutic tools to take a better care of most susceptible periodontitis patients, such as drug local delivery approaches. Though, maintaining an effective drug concentration for a prolonged period of time has not been achieved yet. In this context, advanced drug delivery strategies using biodegradable nanocarriers have been proposed to avoid toxicity and frequency-related problems of treatment. The versatility of distinct nanocarriers allows the improvement of their loading and release capabilities and could be potentially used for microbiological control, periodontal regeneration, and/or immunomodulation. In the present review, we revise and discuss the most frequent biodegradable nanocarrier strategies proposed for the treatment of periodontitis, including polylactic-co-glycolic acid (PLGA), chitosan, and silica-derived nanoparticles, and further suggest novel therapeutic strategies. © 2018 John Wiley & Sons A/S.

Published by John Wiley & Sons Ltd. All rights reserved

bioactive glass

chitosan
nanoparticles
periodontitis
PLGA
regulatory T lymphocytes
antiinfective agent
chitosan nanoparticle
mesoporous silica nanoparticle
nanocarrier
polyglactin
antiinfective agent
chitosan
nanoparticle
adaptive immunity
antimicrobial activity
drug delivery system
effective concentration
human
immunomodulation
innate immunity
nonhuman
patient compliance
periodontitis
priority journal
Review
tissue regeneration

chemistry
drug delivery system
periodontitis
Anti-Bacterial Agents
Anti-Infective Agents
Chitosan
Drug Delivery Systems
Humans
Nanoparticles
Periodontitis
Polylactic Acid-Polyglycolic Acid Copolymer