Usefulness of the Cl/Br ratio to identify the effect of reverse osmosis treated waters on groundwater systems

Alcalá F.J.

The chloride-to-bromide molar ratio (R? Cl/Br) is widely used in tracing groundwater salinity. Less experience exists on how some industrial processes such as the reverse osmosis (RO) water treatment modify the R value of desalinated water (P) and reject brine (T), and even less on how distinctive for hydrogeological applications the R changes are. This paper assesses the Cl/Br ratio usefulness to identify the effect of P and T on groundwater systems. First, the experimental R changes produced in P and T during standard RO operations and treatments of raw (I) seawater, brackish groundwater, and tertiary-treated domestic wastewater in nine RO plants (three in Gran Canaria Island and six in south-eastern continental Spain) were determined by means of the XP = RP/RI (R change in P) and XT = RT/RI (R change in T) ratios. XP and XT were respectively 0.90 and 1.07 for treatment 1 (weak pre-acidification) in one RO plant, 0.82 ± 0.09 and 0.94 ± 0.05 for treatment 2 (weak pre-acidification and weak pre-chlorination) in five RO plants, 0.63 and 0.97 for treatment 3 (moderate pre-acidification and strong pre-chlorination) in one RO plant, and 3.21 ± 2.02 and 1.00 \pm 0.00 for treatment 4 (post-chlorination) in two RO plants. P was for irrigation (treatments 1 to 3) and for domestic use (treatment 4). Latter, the experimental XP and XT ratios were input data for six theoretical mixing scenarios aimed at showing how groundwater R changes in response to progressive contributions of P and T produced from different I water. The Cl/Br ratio enables to identify the effect of P from treatments 3 and 4, is scarcely effective for treatments 1 and 2, and is especially useful when P produced from seawater is used in other aguifer having different R. The CI/Br ratio did not clearly identify T from any treatment. © 2019 Elsevier B.V.

Chloride-to-bromide ratio

Desalinated water

Groundwater mixing scenarios

Groundwater quality

Reject brine
Reverse osmosis
Acidification
Aquifers
Chlorination
Chlorine compounds
Groundwater
Groundwater resources
Mixing
Molar ratio
Reverse osmosis
Seawater effects
Wastewater treatment
Water filtration
Water quality
Brackish ground water
Chloride-to-bromide ratio
Desalinated water
Domestic wastewater
Groundwater mixing
Groundwater salinities
Groundwater system
Industrial processs
Industrial water treatment
aquifer
brine

bromide
chloride
desalination
experimental study
groundwater pollution
mixing
reverse osmosis
wastewater treatment
Canary Islands
Gran Canaria
Las Palmas
Spain