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Abstract

Addressing the pressing challenges in agriculture necessitates swift advancements in breeding programs, particularly for perennial
crops like grapevines. Moving beyond the traditional biparental quantitative trait loci (QTL) mapping, we conducted a genome-wide
association study (GWAS) encompassing 588 Vitis vinifera L. cultivars from a Chilean breeding program, spanning three seasons and
testing 13 key yield-related traits. A strong candidate gene, Vitvi11g000454, located on chromosome 11 and related to plant response
to biotic and abiotic stresses through jasmonic acid signaling, was associated with berry width and holds potential for enhancing
berry size in grape breeding. We also mapped novel QTL associated with post-harvest traits across chromosomes 2, 4, 9, 11, 15, 18, and
19, broadening our grasp on the genetic intricacies dictating fruit post-harvest behavior, including decay, shriveling, and weight loss.
Leveraging gene ontology annotations, we drew parallels between traits and scrutinized candidate genes, laying a robust groundwork for
future trait-feature identification endeavors in plant breeding. We also highlighted the importance of carefully considering the choice
of the response variable in GWAS analyses, as the use of best linear unbiased estimators (BLUEs) corrections in our study may have
led to the suppression of some common QTL in grapevine traits. Our results underscore the imperative of pioneering non-destructive
evaluation techniques for long-term conservation traits, offering grape breeders and cultivators insights to improve post-harvest table
grape quality and minimize waste.

in employing molecular markers derived from quantitative trait
loci (QTL) analysis. This approach facilitates the prediction of fruit
characteristics in immature plants, and promises a substantial
reduction in the breeding cycle of up to a decade, as well as
notable cost savings of 16%-34% [19-21].

Due to the commercial importance of seedlessness in table
grapes, further research has been carried out to elucidate the
genetic architecture of this trait. Bouquet et al. [22] proposed the
prevailing hypothesis on seedlessness’ genetic control, suggest-

Introduction

Grapevine plays a pivotal role in global fruit production, gener-
ating almost 70 million tons of fruit annually, of which 43.3% is
table grapes [1, 2]. The ideal grape qualities for consumers and
growers encompass traits such as size, taste, firmness, and post-
harvest longevity, while the economic value is intrinsically tied to
yield and quality [3-7]. However, various factors including rachis
browning, cluster decay, and berry cracking can compromise post-

harvest quality, affecting not only the aesthetics but also the
sensory perception of the fruits [8-13].

Traditional grapevine breeding methods face challenges in bal-
ancing these desirable traits, largely due to the considerable
investment in time and resources, in addition to the prolonged
juvenile phase characteristic of woody perennial species [14-17].
This issue is particularly pertinent since the fruit characteristics
evaluation can only start after the plant matures, typically in the
fourth or fifth year of its life cycle [18]. An emergent solution lies

ing it is largely controlled by a dominant regulator gene, the
seed development inhibitor (SDI), and three unidentified recessive
genes. Chromosome 18 hosts a QTL linked to stenospermocarpic
seedlessness, accounting for 50%-90% of seed weight variation
[23, 24]. Further studies have identified VVAGL11, a major func-
tional candidate gene encoding a MADS-box transcription fac-
tor involved in seed development [25]. Marker-assisted selection
(MAS) suitable for use in grape breeding programs has been
developed [26]. While additional QTL linked to seed dry weight
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have been found on chromosomes 2 [27], 5 [4, 27], and 14 [4, 27],
their contributions are smaller compared to SDI. In terms of fresh
weight, loci have been identified across numerous chromosomes
[4, 24, 28-30]. Likewise, loci influencing seed number have been
detected across various chromosomes [4, 24, 28-31].

Berry and seed traits in table grapes have shown a strong
positive correlation [18]. Berry size, in particular, has been linked
to the SDI locus with a major QTL, while additional minor QTL
provides additive contributions [4, 32-34]. Berry weight loci reside
in arange of chromosomes, including 1, 2,4, 5,7,9, 10,11, 13,15, 16,
and 18 [24, 28, 29, 31, 33, 35-39], while cluster weight is controlled
by loci on chromosomes 2, 5, 10, 12, 16, 17, and 18 [36, 40].

The genetic basis of berry shape, defined as the ratio between
width and height or based on categorical scales, has also been
investigated [41, 42] and has been associated with genes on mul-
tiple chromosomes and a variety of functions, including transcrip-
tion regulation, binding activities, catalytic activity, cell wall bio-
genesis, and protein transport [42]. Berry diameter is influenced
by loci on chromosomes 2 and 18 [24, 33], whereas berry volume
is impacted by loci on chromosomes 2, 12, 17, and 18 [33, 40].
Berry cracking has been linked to regions in chromosomes 11 and
13 [11, 35].

Linkage mapping has contributed significantly to our under-
standing of grapevine traits but has limitations due to a reliance
on high frequency of recombination events [43]. Genome-wide
association analysis (GWAS) provides an alternative by studying
genetic architecture and gene interactions influencing traits [44—
49]. Despite these advances, further GWAS studies are needed for
berry diameter, cluster weight, and post-harvest traits, the genetic
underpinnings of which remain less explored than those of
seed traits.

Exploring trait genetic architecture requires diverse individu-
als representing existing trait variability [50]. Yet, many studies
have relied on single-population analysis, underscoring the need
for broader analyses, such as the three-population approach as
demonstrated by [4].

In this study, we carried out a GWAS analysis on a comprehen-
sive set of 588 genotypes, which includes seven populations and
commercial varieties, to investigate into 13 yield-associated traits.
Our main goals were i) to discover new QTL, with a special empha-
sis on the lesser studied post-harvest traits, and ii) to corrobo-
rate QTL previously pinpointed in other studies. Consequently,
we aimed to elucidate the genetic architecture underpinning
these traits.

Moreover, we present two novel statistical methods for the
in silico validation of candidate single nucleotide polymorphisms
(SNPs) that surpass the set P-value threshold. Firstly, we evalu-
ated the suitability of molecular markers for MAS by integrat-
ing the ‘bagging’ concept [51]. In the second approach, we uti-
lized Gene Ontology-derived bioinformatic data to construct a
trait network based on correlations, efficiently elucidating genetic
interrelationships among traits. This enables the discernment of
underlying genetic relationships among traits in an efficient and
parsimonious manner.

Results

Phenotype analysis

Figure 2A presents the adjusted phenotypes, which were tested
for significant differences among families using the ANOVA test
(P < 0.01, Supplementary Table S3). While the distribution of
all traits, except for the seed traits, approximated a normal dis-
tribution, the seed traits showed mixture of two Gaussian dis-
tributions. Despite our attempts to improve the normality of

the trait distributions through standard transformations such as
log, sqrt, inverse, and asinh, we were unsuccessful. Nonetheless,
the residuals of all cases followed the assumption of a normal
distribution.

Population structure, genetic relatedness, and
linkage equilibrium decay

Figure 2B shows the Principal Component Analysis (PCA) output,
where the first eight PCs explain 92.27% of the total genetic vari-
ance. We detected nine clusters, including the seven crosses, the
diversity panel group (jardin), and a ninth group of self-pollinated
accessions. PC1 explains 63.36% of the total genetic variance
and separates accessions based on their female ascendant. The
PC1 axis divides the accessions based on their female parent,
where the left portion of the axis represents four families of half-
sibs (406, 411, 900, and 912) with cultivar 23 (Ruby Seedless x
Centennial Seedless) as their female parental line and the self-
pollinated family with cultivar 23 being both the female and male
parental. The right portion of the axis includes the jardin group
and the three remaining families (111, 902, and 929). In contrast,
PC2, which accounts for 12.43% of the total genetic variance,
enables clear identification of all the clusters of full-sibs. The
lower portion of PC2 is occupied by two families (111 and 406) that
share Crimson (the variety from the diversity panel with the lower
value for PC2) as the male parent.

According to the kinship and k-means analysis, there are nine
distinct clusters, which can be further categorized into two super-
clusters, which are consistent with the findings of the PCA. The
first supercluster includes all the lines with accession 23 as their
female parental line, while the second supercluster comprises
the remaining lines. Analysis of linkage disequilibrium (LD) decay
indicates that an average LD decay occurs at a distance of 10 kbp
for a correlation threshold of > = 0.2, as shown in Supplemen-
tary Fig. S4.

Genome-wide association study

We used the BLINK algorithm to assess a panel of 588 genotypes
for 13 yield-related traits using a total of 49 210 SNP markers. Our
QQ-plots showed deviations from the null hypothesis of no asso-
ciation for 11 of the 13 traits, as detailed in Supplementary Fig. S5.
We did not observe any association for S_number and P_rachis_loss.
We identified 69 significant associations (Table 1) above the false
discovery rate (FDR) threshold, and 49 of these associations also
exceeded the Bonferroni threshold (a = 3%5,LOD > 5.99). Chro-
mosome chrl8 had the highest number of associations (16), while
chromosomes chr 3, chr 6, chr 7, chr 10, chr 12, and chr 13 had only
one association each. Among the 11 traits with significant hits,
B_weight had the fewest associations (1), while B_width (11) and
S_fresh (14) had the highest number of associations. Additionally,
H_rachis and P_cluster showed two associations each as shown
in Fig. 3.

Associated SNPs as candidates for marker
selection

In evaluating marker-trait associations, any significant SNP
marker must exhibit a discernible pattern when we arrange
accessions based on their phenotypic values. Consider an extreme
case: if an SNP accounts for 100% of the variance, accessions
coded as “0” should be first, followed by those genotyped as “1”,
and lastly by those marked as “2”. Following this logic, if lines
with genotype “2” register higher phenotypic values than those
with genotype “0”, a negative Spearman’s correlation emerges.
However, when phenotypic values rise in lines with genotype “0”
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Figure 1. Schematic workflow of the phenotyping process. Berry, seed, and harvest cluster/rachis weights were phenotyped at the time of harvest
from Group A’s clusters. After 45 days at storage, cluster weight was phenotyped from Group A’s clusters and rachis weight was phenotyped from

Group B’s clusters.

over those with “2”, we observe positive correlations. In instances
with ambiguous genotype trends, correlations lean towards zero.
Given that the assignments “0” and “2” are arbitrary for any two
possible homozygous genotypes of a particular SNP, our focus
is on the correlation’s absolute value, rather than its original
value.

We obtained Spearman’s correlation (p) values as described in
section 2.7 for the 11 traits with significant associations. Those p
values ranged from 0.516 (H_cluster) to 0.941 (S_dry) (Fig. 4). We
observed that related traits exhibited similar patterns, as seen
in S_fresh (0.805) and S_dry (0.941), where accessions carrying
allele “0” tended to have higher phenotypic values. However, we
also identified an interesting phenomenon in the extreme highest
phenotypes of S_fresh, which were occupied by accessions carry-
ing allele “1”. We found that B_height (0.907) and B_width (0.936)
exhibited a continuous and smooth decay, whereas B_weight
(0.713) exhibited an irregular and less informative decay. B_shape
(0.603) and H_cluster (0.516) show the lower values, and their
patterns were close to a uniform distribution in which the average
genotypic value for each position is expected to be the average
genotypic value in the whole population. Rachis-related traits,
H_rachis (0.848) and P_rachis (0.718), showed a similar pattern,
where accessions carrying allele “1” were highly likely to be in the
top positions. Finally, P_cluster (0.894) and P_cluster_loss (0.803)
show a solid but noisy decay trend.

To further interpret the p values, we conducted a second exper-
iment using 10 randomly selected SNP markers for each trait
instead of the most significant one (see Supplementary Fig. S7).
The overall average Spearman’s correlation was 0, with a high
standard deviation of 0.41.

Candidate genes and gene ontology

We detected a total of 69 SNPs significantly associated with the
phenotypic traits of interest (Table 1). We found that 48 SNPs
were located within a gene, while 20 SNPs were situated within

10 kbp of a candidate gene among these identified SNPs (Table 1).
The nearest gene to the remaining SNP (S_fresh - chr11:13989722)
was located at a distance of 14792 bp. Our study identified a set
of 172 candidate genes (Fig. 3). On average, each GWAS hit was
associated with 2.49 genes, resulting in 163 distinct genes, with
154 genes associated with only one hit, and nine genes associated
with two hits. Notably, four genes (Vitvil8g01899, Vitvil8g01900,
Vitvi19g00424, and Vitvi19g00425) were shared between S_fresh
and S_dry, while two genes (Vitvi08g1794 and Vitvi08g1795)
were common to both B_height and B_width. We observed a
single gene in 13 hits and a maximum of six for hit S_fresh -
chr15:16996087 followed by five genes for the associations of
B_height - chr05:02487910, B_shape - chr05:00336776, B_width -
chr08:17678111, and P_rachis - chr02:02666566.

Out of the 172 candidate genes, 83 (48.25%) had at least one
Gene Ontology (GO) annotation, resulting in a total of 430 GO
terms, with an average of 2.5 ontologies per gene. The GO terms
were classified into three main categories: Cellular component
(118 GO terms), Molecular function (179 GO terms), and Biolog-
ical process (133 GO terms). The most frequently annotated GO
terms were “GO:0005634 nucleus” (19), “G0:0016020 membrane”
(15), and “GO:0005737 cytoplasm” (13) for Cellular component;
“G0:0008270 zinc ion binding” (11), “G0O:0005524 ATP binding”
(7), “GO:0003723 RNA binding” (6), and “G0:0043565 sequence-
specific DNA binding” (6) for Molecular function; and “G0O:0006508
proteolysis” (11) and “GO:0045454 cell redox homeostasis” (5) for
Biological process.

Correlation between traits

We observed strong phenotypic correlations among traits within
the same organ (seed, berry, and cluster/rachis) in our study,
except for P_cluster_loss, which did not exhibit any correlation
with other traits as depicted in (Fig. 5) Berry traits, except for
B_shape, exhibited strong correlations among them. B_shape
only is correlated with B_height and this correlation is weak in
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Figure 2. (A) Adjusted phenotypic values (BLUEs) for each trait with genotypes grouped by families, also denoted with color. (B) PCA based on SNP
markers. S_number: number of seeds, S_fresh: seed fresh weight, S_dry: seed dry weight, B_height: berry height, B_width: berry width, B_shape: berry
shape (height-to-width ratio), B_weight: berry weight, H_cluster: cluster weight at harvest, H_rachis: rachis weight at harvest, P_cluster: cluster weight
at 45 days post-harvest, P_cluster_loss: percentage of cluster weight loss after 45 days, P_rachis: rachis weight at 45 days post-harvest, P_rachis_loss:
percentage of rachis weight loss after 45 days.
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Figure 3. Multi-layered summary of GWAS. Colors indicate the different traits, and significant associations are represented in the inner Manhattan
plot. The length of the line and the size of the point are proportional to the LOD value. The white circle’s radius represents the Bonferroni threshold
(LOD > 5.99), where points in the gray area indicate associations above this threshold. The second layer shows the density of SNP markers. The third
layer is a schematic representation of 20-kbp bins in which the gene search was performed. The outermost layer displays the number of genes found
in each region (one gene per point). S_fresh: seed fresh weight, S_dry: seed dry weight, B_height: berry height, B_width: berry width, B_shape: berry
shape (height-to-width ratio), B_weight: berry weight, H_cluster: cluster weight at harvest, H_rachis: rachis weight at harvest, P_cluster: cluster weight
at 45 days post-harvest, P_cluster_loss: percentage of cluster weight loss after 45 days, P_rachis: rachis weight at 45 days post-harvest.

the diversity panel. Lower correlations were found across organs.
Both breeding lines and cultivar panels showed weak and null
correlations between seed traits and other traits, respectively.

We observed that correlations based on GO were generally
lower than those based on phenotypes, except for the subset of
GOs related to the Cellular component (CC) category, which was
composed of 10 GOs that appeared more than twice. In contrast,
correlations within related traits were significantly lower in
CC-GOs compared to phenotypic correlations. Specifically, the
strong correlations (r > 0.7) observed were primarily driven
by “G0:0005634 nucleus”, which was found in traits such
as B_weight and P_cluster_loss. Higher correlations between
B_width and H_rachis, and between S_dry and P_rachis, were
driven by “G0:0016020 membrane” and “GO:0005737 cytoplasm”,
respectively.

The correlations based on the Molecular Function (MF) and
Biological Process (BP) subsets are considerably lower, with only
one value exceeding 0.7 for each subset. The MF-GO subset
exhibits robust correlations between S_dry and P_cluster_loss,
which can be attributed to a comparable pattern in the ontologies
“G0:0003700 DNA-binding transcription factor activity” and

“GO:0043565 sequence-specific DNA binding”, shared with
P_rachis. Moreover, the correlations between B_height and
P_rachis share the ontologies “G0:0008270 iron ion binding”
and “G0:0004185 serine-type carboxypeptidase activity”, whereas
B_height and B_shape have ATP/GTP-related common ontologies.
In the case of the BP-GO subset, all correlations with values
higher than 0.3 are caused by the ontology “GO:0006508
proteolysis”, in which the four correlated traits (B_height,
P_cluster, P_cluster_loss, and S_fresh) are over-represented.
S_fresh correlations are lower due to a differential pattern based
on chloroplast and photorespiration ontologies.

Trait contribution to gene ontologies

Results for the most frequent GO terms are shown in Fig. 6B.
In considering all GO subsets, we observed consistent relative
contributions of each trait, aligning with the proportion of GWAS
hits for each trait. However, upon analyzing the ten most frequent
GO terms for each subset, we discovered the trait-specificity of
each GO. Among them, only three GOs showed more than five
traits contributing to them, which are “G0:0005634 nucleus” (with
19 contributions from 9 traits), “G0O:0005737 cytoplasm” (with
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S_fresh | M_11_13989722 S_dry | M_18_27016067 B_height | M_05_2487910

H_cluster | M_08_21589248

Average genotypic value

H_rachis | M_16_1985967

P_cluster | M_18_25170861

1 50 100 150 200 250 1 50 100
Phenotypic ranking

150 200 250

Figure 4. Marker selection using the most significant SNP as candidates. The y-axis displays the average genotypic value of the most significant SNP
detected for a given trait. The x-axis represents the ranking position, with 1 indicating the highest phenotypic value and the 250 indicating the lowest
phenotypic value for a particular trait. For each ranking position, the mean genotypic value is determined by averaging 200 replications of a procedure
that randomly samples a subset of 250 accessions, sorts them based on their phenotypic value, and assigns the genotypic value to the ranking
positions. The dashed line represents the mean genotypic value discovered in the entire population for the SNP of interest. The highest LOD from the
GWAS analysis links each trait to the SNP. We measured the following traits: S_fresh: seed fresh weight, S_dry: seed dry weight, B_height: berry height,
B_width: berry width, B_shape: berry shape (height-to-width ratio), H_cluster: cluster weight at harvest, H_rachis: rachis weight at harvest, P_cluster:
cluster weight at 45 days post-harvest, P_cluster_loss: percentage of cluster weight loss after 45 days, P_rachis: rachis weight at 45 days post-harvest.

13 contributions from 7 traits), and “G0:0005524 ATP binding”
(with 7 contributions from 6 traits). We did not find any common
ontologies such as “G0:0016020 membrane” or “GO:0005524 ATP
binding” that included post-harvest traits. B_shape was the only
trait found in both the organelles “GO:0005739 mitochondrion”
and “G0O:0009507 chloroplast”.

With regards to seed traits, there is limited information
available for S_dry due to only one of its associated genes
having GO annotation. Specifically, a transcription factor from
the TCP family has been identified near the major QTL of
chr18:26 M. The SNP at chr14:7345807 is responsible for all of
the ontologies related to chloroplast structure and function
in S_fresh. This SNP is located within the gene Vitvil4g00472,
which encodes for the ATP-dependent zinc metalloprotease
FTSHI 5.

Regarding berry traits, we identified an SNP located within
the gene sequence of Vitvi15g00014 (F6ISH6) as the only match
for B_weight (chr15:485443). This gene encodes a TATA-binding
protein (TBP) and is associated with ontologies related to nuclear
positioning, ATP binding, and chromatin remodeling.

B_width determines “G0:0022857 transmembrane transporter
activity” exclusively, which is identified in two distinct hits. The
first hit contains a polymorphic nucleotide at chr11:4447151
within the gene structure of Vitvi11g00454. This gene encodes

three NRT1/PTR FAMILY 6.2 proteins, The second SNP is located
at chr17:6092969, positioned near the gene Vitvil7g00516, which
encodes an NFD4-like protein.

The ontologies shared by B_height and B_shape include
“G0:0005739 mitochondrion”, “G0:00036764 nucleic acid binding”,
“G0:0003924 GTPase activity”, “GO:0005525 GTP binding”, and
“G0:0006379 mRNA cleavage”.

Two distinct hits contribute to the “G0O:0006508 proteolysis” in
B_height. The first hit is located at chr08:11609006 and contains
the genes Vitvi08g00928 and Vitvi08g02111, which encode for
aspartic proteinase CDR1 proteins. The second hit, located at
chr14:28926364, contains the gene Vitvi14g03061, which encodes
for a serine carboxypeptidase.

Finally, we found that H_cluster exclusively contributes
to the ontology “GO0:0003755 peptidyl-prolyl cis-trans iso-
merase activity” due to an SNP located at chr04:20111668
within the sequence of Vitvi04g01437. Additionally, H_cluster
is the only trait in which the ontology “G0:0034599 cellular
response to oxidative stress” was identified. Twwo different
hits (chr04:20111668 and chr08:18000198) contain candidate
regions that harbor the genes Vitvi08g01521 and Vitvi04g01438,
respectively. Vitvi08g01521 encodes type II peroxiredoxin E, while
Vitvi04g01438 is associated with peptide methionine sulfoxide
reductase AS.
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Figure 5. Correlation between traits. The Pearson’s r between traits is represented in each graph, with nodes representing each trait. The width of the
edges between nodes is proportional to the strength of the correlation, with edges shown in grey for 0.3 <r > 0.7 and highlighted in black for r>0.7.
Correlations were calculated using two methods: GO-based correlations, which used GO frequencies as features, and phenotype-based correlations,
which used BLUE values for cultivars (jardin) or breeding lines (other families). We measured the following traits: S_fresh: seed fresh weight, S_dry:
seed dry weight, B_height: berry height, B_width: berry width,B_shape: berry shape (height-to-width ratio), B_weight: berry weight, H_cluster: cluster
weight at harvest, H_rachis: rachis weight at harvest, P_cluster: cluster weight at 45 days post-harvest, P_cluster_loss: percentage of cluster weight loss

after 45 days, P_rachis: rachis weight at 45 days post-harvest.

Discussion
Trait adjustment

Historically, the QTL for SDI on chromosome 18 has been pin-
pointed as pivotal for grapevine seed presence [24, 25, 27, 52].
Although serving as a reliable control in calibrating GWAS models,
its potential to spur false positives in other traits is acknowledged
[4, 53]. Our results showed that despite leveraging best linear
unbiased estimators (BLUEs) corrections for berry and harvest
traits covariate effects in our analysis, post-harvest traits did not
exhibit correlations with seed traits. The use of BLUEs correc-
tions in our study may have contributed to the absence of some
common QTL previously reported in the literature. For example,
the SDI-co-located QTL for berry weight on chromosome 18 [54]
was not detected in our analysis. To further investigate this, we
conducted additional analyses using uncorrected BLUEs as the
response variable for mixed linear model (MLM) and BLINK GWAS
models. We found that the SDI QTL appeared at a Bonferroni level
in MLM and at an FDR level in BLINK, as described in Supple-
mentary Fig. S6. These findings suggest that the use of BLUEs
corrections in our study may have led to the suppression of some
common QTL in grapevine traits, highlighting the importance of
carefully considering the choice of the response variable in GWAS
analyses [4]. Among our adjusted traits, only berry width aligned
with the QTL on chromosome 18 with logarithm of odds (LOD)
scores of 5.49 and 6.33. Conversely, most unadjusted post-harvest
traits, except for the percentage of rachis weight loss after 45 days,
displayed a QTL association on chromosome 18 with LOD scores
ranging from 8.73 to 14.53, suggesting an indirect association with
seed weight. Further investigation is needed to determine the

precise nature of this relationship and whether it can be exploited
for grapevine breeding purposes.

Gene ontologies as trait features

Gene ontologies offer a valuable avenue for functional gene com-
parisons, especially in expansive data analyses [55, 56]. Our study
introduces a pioneering methodology leveraging GO to juxta-
pose traits, focusing on genes spotlighted in GWAS. Tapping into
GO annotations, we probed the nexus between potential genes
and target traits. Annotations were ranked from 1 to 5, where
ascending scores mirror superior annotation quality, corroborated
through empirical evidence or literary sources [55].

This approach provides a starting point for identifying potential
trait features and their associated candidate genes, with applica-
tions in plant breeding. Moreover, similar approaches have been
used in other fields such as human health to explore specific
regions of interest [57, 58].

We found that the CC subset GOs had higher correlations
between traits due to their non-specific nature, as proteins are
required in all cellular components for almost all quantitative
traits as denoted in Fig. 5. In addition, the MF and BP GOs had
lower correlations, which were expected due to their higher speci-
ficity. We suggest that the patterns and insights discovered from
the MF-GO and BP-GO correlations are more valuable than those
found in CC-GO correlations.

Seed traits

The widely recognized SDI QTL for seedlessness [24, 25, 27, 52]
is evident in both seed fresh weight (2 hits) and seed dry weight
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Figure 6. Contribution of traits to the most frequent GOs. To link traits to the most frequent GO terms, we followed a process represented in (A) by
means of regions and genes. (B) For each type of GO, including CC, MF, and BP, we displayed the total number of GOs and the top 10 most frequent ones
in (B). The bars were colored based on the proportion of GO occurrences that were found for each trait, using the pipeline shown in (A). S_fresh: seed
fresh weight, S_dry: seed dry weight, B_height: berry height, B_width: berry width, B_shape: berry shape (height-to-width ratio), B_weight: berry weight,
H_cluster: cluster weight at harvest, H_rachis: rachis weight at harvest, P_cluster: cluster weight at 45 days post-harvest, P_cluster_loss: percentage of
cluster weight loss after 45 days, P_rachis: rachis weight at 45 days post-harvest.

(4 hits), detailed in Table 1 and Fig. 3 from our analysis. Contrast-
ing with traditional models like MLM, which often detect numer-
ous near-significant SNPs [59, 60], the BLINK algorithm pinpoints
significant, proximate SNPs. This arises as BLINK removes linked
markers based on an LD threshold of 1> > 0.7, often matching
physically associated markers. This concurrence might stem from
the major QTL effect, accounting for nearly 70% of the variance
[23-25]. A discernible trend exists in the SDI region for seed
number, visible in Supplementary Materials (Fig. S5), albeit not
reaching statistical significance.

Significant SNPs on chromosome 1 for seed fresh (chr01:22306525)

and dry weight (chr01:19586589) might align with the WRKY3 QTL
noted by [61]. Similarly, QTL for seed traits in linkage groups 2, 4,
and 14 described in [4] may correspond to those in our study.
The coincident SNP for both seed traits on chromosome 19 at
5 Mbp (chr19:5737748) could match the NDR1 QTL from [62].
This SNP in our study is a structural variant of the Vitvil9g00425
gene, denoted as an ankyrin repeat-containing protein lacking
annotated ontologies.

In the SDI QTL, we observed a few GO annotations for candidate
genes, which might have resulted in an under-representation of
seed dry weight in the GO-related analysis. However, we identified

genes Vitvil8g01868 and Vitvil8g01875 as transcription factors
from the TCP and MYB families, respectively.

Regarding the significant presence of allele “1”in the accessions
with higher fresh seed weights, we identified that six of the top
10 lines came from family 929, all carrying allele “1”. Within
the top 50 accessions, family 929 represented 12 (24%). All of
these carried allele “1”. Conversely, of the remaining 38 lines, only
eight had allele “1”, with the rest having allele “0” (Supplemen-
tary Table S9). Importantly, just two accessions had allele “2”, and
both ranked in the last quartile (at positions 411 and 433). The
variation in allele frequencies can be attributed to the unique
characteristic of family 929, which has Italia as its only seeded
parental line.

Berry traits

In our search for berry weight-related QTL, we failed to identify
any stable QTL commonly reported in the literature, such as those
in [4]. We only found one QTL in linkage group 15 [28]; however, its
genetic location deviated considerably from our physical position.
The absence of significant SNPs for berry weight might be due
to the corrections we made for seed dry weight, as discussed in
section 4.1.
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For traits associated with size, we discovered QTL on chro-
mosome 5 linked to berry dimensions—height, width, and
shape. These QTL might correspond to one highlighted in an
earlier study [63]. The gene closest to the berry height QTL
is characterized as a bromodomain protein that is associated
with cell shape regulation ontologies [56]. In our search for
berry width, we detected a noteworthy SNP on chromosome
11 with an LOD score surpassing 19 and a robust Spearman’s
correlation (p = 0.936). This SNP, interestingly, resides within
Vitvi11g00454, encoding a protein designated D7TC02. This
protein, a member of the NRT1/PTR family, plays a role in
the transmembrane transport of secondary metabolites in
response to jasmonic acid. Furthermore, researchers recognize
D7TCO02 as the last divergent ortholog (LDO) of the Arabidopsis
NRT1 protein [64] (locus AT2G26690https://www.arabidopsis.org/
servlets/TairObject?id=32128 type =locus).

Concerning ontologies shared by berry height and shape, we
identified GO terms including “mitochondrion”, “nucleic acid
binding”, “GTPase activity”, “GTP binding”, and “mRNA cleavage”.
Genes like Vitvi05g00104 and Vitvi05g00105, which encode for a
zinc finger CCHC transcription factor and the subunit 9A of DNA-
directed RNA polymerases II, IV, and V, play a part in some of
these ontologies pertaining to berry height. Contrastingly, genes
such as Vitvi1l8g01149 and Vitvil8g02813, which encode for a
Rac-like GTP-binding protein RAC1 and the subunit RPA12 of
DNA-directed RNA polymerase I, respectively, are pivotal to the
ontologies related to berry shape.

Harvest traits

In this study, we explored the QTL linked to cluster weight and
rachis weight in grapevine. Given the highly quantitative nature
of these traits, influenced by numerous minor gene contribu-
tions, the literature hasn’t reached a consensus on their QTL
location. Additionally, population or environmental factors might
render these QTL unstable. We delved into an exhaustive litera-
ture review, consulting sources like [34, 36, 40, 44—46]. Our findings
identified two potential overlaps: one on chromosome 11 from
[44] and another on chromosome 17 courtesy of [40], both related
to cluster weight. However, our search yielded no overlaps for
rachis weight. Nevertheless, our data indicates that of all the
traits, only cluster weight influenced the response to oxidative
stress ontologies, and this was evident through two distinct QTL
on chromosomes 4 and 8.

Post-harvest traits

In this study, we focused on post-harvest traits, a subject not
previously examined in depth in the existing literature. To the
best of our understanding, we are the first to investigate the
genetic underpinnings of these traits in detail. Consequently,
our discoveries shed light on the genetic architecture of post-
harvest traits, laying a foundation for subsequent research in this
domain. Out of all the traits we studied, only seed number and the
percentage of rachis weight loss after 45 days of storage remained
elusive in yielding significant results. Given that measuring rachis
weight is inherently destructive, we could not compute the rachis
weight loss using the identical cluster at both harvest and post-
harvest for each genotype and experimental setup. This added an
element of noise and uncertainty to our phenotypic value calcula-
tions, highlighting the importance of developing non-destructive
methods for measuring post-harvest traits in grapevine breeding
programs.

Our exploration revealed QTL linked to several post-harvest
traits. Notably, we found a QTL that overlaps with the seedlessness
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QTL SDI on chromosome 18. We discovered a novel QTL on chro-
mosome 18 at 1 Mbp for cluster weight at 45 days post-harvest,
which was linked to the gene Vitvi18g00099. This gene manifests
as the pre-rna-processing TSR1 protein D7UD95 and the LDO of
Arabidopsis TSR1 protein [64, 65] (locus AT1G42440 https://www.
arabidopsis.org/servlets/TairObject?accession=locus:2035893),
essential in ribosome biogenesis, especially its small subunit.
Our results provide novel insights into the genetic basis of post-
harvest traits and emphasizing the pivotal role of identified QTL
in grapevine breeding schemes. We identified two QTL for the
percentage of cluster weight loss post-45 days on chromosomes 2
and 11, associating with genes Vitvi02g00420 and Vitvi11g00663,
respectively. The annotation of Vitvi02g00420 designates it as a
hydroxymethylglutaryl-CoA synthase with roles in acetyl-CoA
metabolic events, inclusive of sterol synthesis [56]. Even though
[35] described a berry-cracking QTL on LG 11, our detection
probably doesn’t align with it given the spatial disparity.

Assessing rachis weight 45 days post-harvest led us to 6 distinct
QTL, with chromosome 18’s QTL aligning with SDI. We found
these QTL across chromosomes 2, 4, 9, 15, and 19. Except for
chromosome 4, all manifested as structural polymorphisms of
genes. The genes from QTL on chromosomes 9 and 15 encode
proteins involved in catalytic processes, while genes from QTL on
chromosomes 18 and 19 are transcription factors from MYB and
SCR families, respectively.

Conclusion

In this study, we identified many SNP markers that were signifi-
cantly associated with yield-related grape traits. Interestingly, 70%
of them were located within an annotated gene. We discovered
a novel QTL on chromosome 11 affecting grapevine berry width
linked to Vitvil1g00454, a gene instrumental in managing stress
via jasmonic acid, which encodes an NRT1/PTR protein that is
recognized as the LDO of Arabidopsis’ NRT1/ PTR FAMILY 6.2
protein. This suggests genetic potential for breeding larger berries.
Additionally, we identified QTL influencing post-harvest traits
on chromosomes 2, 4, 9, 11, 15, 18, and 19. These findings con-
tribute to the understanding of genetic factors that underlie the
fruit’s susceptibility to decay, shriveling, and weight loss after har-
vest. Furthermore, our results highlight the need to develop non-
destructive methodologies that can accurately assess long-term
conservation traits. These insights are valuable for grape breeders
and growers who seek to improve the post-harvest quality of table
grapes and reduce waste. Additionally, our study highlights the
importance of carefully considering the choice of the response
variable in GWAS analyses, as the use of BLUEs corrections in
our study may have led to the suppression of some common QTL
in grapevine traits. Overall, our approach of using gene ontology
annotations to compare traits and examine candidate genes may
provide a useful starting point for identifying potential trait fea-
tures and their associated candidate genes in plant breeding.

Material & Methods
Plant material and experimental design

In this study, we analyzed a total of 68 table grape cultivars
(Supplementary Table S1) sourced from the germplasm collection
of the Instituto de Investigaciones Agropecuarias (INIA) in Chile
and 536 segregating individuals from seven related F; families
(Supplementary Table S2) from the INIA table grape breeding
program. These families were generated from directed pollination
of traditional varieties, including Crimson Seedless (Crimson),
Flame Seedless (Flame), and Italia; selections from INIA’s breeding
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program, such as 23 (Ruby Seedless x Centennial Seedless), 5 (Red
Seedless x Dawn Seedless), and Iniagrape-one (Flame Seedless
x Black Seedless, also known as Kishmish Chernyi); along with
unidentified pollen donors (S5LL, 3V, and 18 V). These crosses were
performed in 2010, conducted embryo rescue to obtain all plants,
except for those resulting from cross 929, which involved the
seeded genotype Italia. We then established single plants at the
INIA experimental field in La Platina, La Pintana, Santiago, Chile
(33°34’S, 70°37°W, elevation 630 m) in 2013. We planted all vines
with row and vine spacing of 3.0 x 1.5 m and trained them using
the Guyot system. Drip irrigation was used, and we employed
standard agronomic and phytosanitary management practices,
except for growth regulator usage, which was not applied.

Phenotyping
We conducted phenotypic characterization of clusters and berries
during the 2018, 2019, and 2020 seasons. At harvest and post-
harvest times, we collected six clusters from each F; plant, har-
vested at 16°Brix, and determined with an analog refractometer
on-site. Similarly, we collected six clusters of three plants from
each cultivar in the germplasm collection.

For each plant, we divided the six clusters into groups A and
B, each consisting of three clusters. We evaluated clusters from
group A only at harvest time, measuring nine traits, including
cluster weight (g), berry weight (g), soluble solids (°Brix), seed
number, seed fresh weight (g), dry seed weight (g), berry height
(cm), berry width (cm), berry shape (berry height/berry width),
and rachis weight (g). For berry-related traits, we obtained mea-
surements from 10 random berries from each cluster using an
in-house script for image analysis. Rachises were weighed after
trimming all berries. In contrast, we evaluated harvest and post-
harvest parameters of the same clusters from group B, which
were labeled, weighed, and packed under standard commercial
conditions before being stored at 0°C for 45 days in a controlled
atmosphere for future post-harvest evaluations. At post-harvest,
we measured four traits: final cluster weight (g), cluster weight
loss (percentage), rachis final weight (g), and rachis weight loss
(percentage). Weight loss was determined as the difference in
weight between harvest and post-harvest, divided by the weight at
harvest. We measured the same clusters for cluster weight before
and after storage and used different clusters for harvest (from
group A) and post-harvest (from group B) evaluation of rachis
weight, as it is a destructive measurement. An schematic diagram
of the phenotypic process is shown in Figure 1. For the sake of
simplicity and clarity, we recorded the original trait names as
follows: S_number (number of seeds), S_fresh (seed fresh weight),
S_dry (seed dry weight), B_height (berry height), B_width (berry
width), B_shape (berry shape, i.e. height-to-width ratio), B_weight
(berry weight), H_cluster (cluster weight at harvest), H_rachis
(rachis weight at harvest), P_cluster (cluster weight at 45 days
post-harvest), P_cluster_loss (percentage of cluster weight loss
after 45 days), P_rachis (rachis weight at 45 days post-harvest),
and P_rachis_loss (percentage of rachis weight loss after 45 days).

Genotyping, quality control, and imputation

Genomic DNA from both germplasm collection and breeding
families was obtained using a DNAeasy® Plant kit (QiaGen,
Germany). Samples from breeding families were extracted once,
while samples from the germplasm collection were extracted
in duplicate. Sequencing and genotyping were performed at the
bioinformatics facility of the University of Minnesota. Samples
were processed for genotyping-by-sequencing (GBS) using an
ApeK1 enzyme and following standard procedures [66-68]. Pooled

samples were sequenced using Illumina HiSeq 2500 equipment.
Sequencing reads from each sample were mapped against the V.
vinifera reference genome PN40024.12X available from Ensembl
genomes, using the Bowtie 2 aligner [69] and FreeBayes Software
[70] to perform the SNP calling considering diploid. To filter the
raw SNP set, we utilized the vcftools software [71], removing non-
biallelic sites and those with a minimum allele frequency (MAF)
<5%. We also excluded samples with a call rate of <50%. After
filtering, we obtained an SNP matrix with 49 210 markers. Missing
values were imputed using Beagle 5.4 software [72].

Population structure, cryptic relatedness, and LD
decay

We utilized the set of SNPs obtained after conducting quality
control to examine the population structure of the grape cohort
through PCA via the prcomp function. To validate the PCA analy-
sis, we employed two unsupervised clustering machine learning
approaches, namely, the hierarchical (hclust function) and the K-
means algorithms (kmeans). We chose a value of K = 9 for both
methods, as recommended by breeders, to account for a group
of cultivars, seven crosses resulting in different families, and a
potential group of accidental self-pollinated lines. We evaluated
the cryptic genetic relatedness between individuals by computing
VanRaden’s kinship matrix using the AGHmatrix package [73, 74].
Linkage disequilibrium decay was assessed by calculating the
relationship between pairwise squared correlation (r?) of SNPs and
physical distance within 500 Kbp via the snprelate package [75].

Modelling of raw phenotypic data

We performed an adjustment of the phenotypic records prior to
conducting GWAS analysis. Specifically, we conducted a linear
fixed effects model using Im function in base R [76] to remove
seasonal and trait-specific covariate effects and obtain the total
genetic value via BLUEs. The general model can be expressed as
follows:

y=X1p+Xow+X3g+e

€~ N(0,0?) @

where y represents a vector of phenotypic records for a given trait.
We employed the fixed effects design matrices Xi, X5, and Xjs.
The vector B denotes the estimates for seasonal effects, while the
vector w represents the estimates for trait-specific covariates. The
vector g contains the estimates for the total genetic value, and e
is a random and homoscedastic error term.

We selected trait-specific covariates based on the breeder’s
knowledge. For berry traits (B_height, B_width, B_shape, B_weight)
and harvest traits (H_cluster, H_rachis), we corrected for both
soluble solids and seed dry weight (trait S_dry). For post-harvest
traits (P_cluster, P_cluster_loss, P_rachis, P_rachis_loss), we cor-
rected using soluble solids. No covariate was used to correct for
seed traits (S_number, S_fresh, S_dry).

Genome-wide association study

We conducted GWAS analysis to evaluate associations between
SNPs and 13 yield-related traits using BLUEs as response variable,
as described in the preceding section. We utilized the BLINK
algorithm [59], implemented in R [76] and included in the GAPIT3
package [60], and incorporated the first six PCs to account for pop-
ulation structure [53]. To reduce type I errors, we adjusted P-values
using standard FDR and Bonferroni corrections. We evaluated
deviations from the null hypothesis of no association between
SNPs and traits using Q-Q (Quantile-Quantile) plots, a critical step
in detecting confounding factors that could inflate P-values [77].
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We used the BLINK algorithm because it has been shown to
outperform its predecessors, including the general linear model,
MLM, and Fixed and random model Circulating Probability Unifi-
cation (FarmCPU), in terms of both computational efficiency and
statistical power, as reported in previous studies [59]. The com-
putational efficiency is achieved by substituting the expensive
random effects model, which accounts for genetic relatedness
and uses the REML algorithm, with an efficient fixed effect model
that is fitted by optimizing the Bayesian information criterion
(BIC). Additionally, better control of false positives and false neg-
atives is achieved by overcoming the assumption of uniform
quantitative trait nucleotide distribution across the genome. This
is done by replacing the bin approach of FarmCPU with an LD-
based criterion.

Evaluation of associated SNPs as candidates for
marker selection

When dealing with simple, qualitative traits, the genetic archi-
tecture typically revolves around one or few genes. If we have
a genomic marker linked to these genes, we will be able to i)
precisely select genotypes that are likely to express the desired
phenotype and ii) identify statistically significant phenotypic dis-
tinctions by categorizing genotypes according to the alleles of said
marker or markers.

However, when it comes with complex, quantitative traits gov-
erned by numerous genes, the pursuit of markers that lead to
significant phenotypic disparities in populations exhibiting alter-
native alleles becomes more challenging. The complexity arises
from the fact that even if we find a statistical causative link
through GWAS, the markers’ capacity to account for phenotypic
variance may remain relatively limited.

To assess whether a marker contributes to differences, a strat-
egy involves arranging the genotypes based on their phenotypic
records. Subsequently, an assessment is made of both the local
and global patterns of allelic frequency. We aim to expand this
approach by applying the concept of ‘bagging’ [51], which consists
in generating multiple populations or ‘bootstrapped samples’
from the original one by permutation.

To minimize sampling bias, we generate 200 bootstrapped pop-
ulations by randomly selecting 250 accessions from the pool with
replacement , and then we assigned a ranking position based
on their phenotypic values (with the accession with the highest
phenotypic being ranked as 1 and the accession with the lowest
value being ranked as 250). We then averaged the genotypic value
found for each of the ranking positions in the 200 bootstrapped
populations. We assessed trends using both visual inspection and
an analytical method, using Spearman’s p correlation between the
ranking positions and the average genotypic value. We described
the procedure using pseudocode notation in Algorithm 2.7.

Algorithm 1. An algorithm for estimating the suitability of a
single SNP marker to phenotypically differentiate bootstrapped
populations.

Input: Vector of accessions (L), vector of phenotypic values (Y), and
vector of genotypic values (X).

set R as the number of replicates.
set S as the sample size
initialize an empty matrix M of R rows and S columns

forr=1toRdo
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generate a subset C by randomly sampling S accessions from
pool L.
reorder C subset based on phenotypic values on Y

fors=1toSdo
set c as the s-th line in C
¢« Cs
set current element in M as the genotypic value of accession
c
Mg < Xe
end for
end for
Compute the average genotypic value of each column in M

S My
output, « &=

Output: Vector with the average genotypic value of ranked posi-
tions based on phenotype

Gene annotation and gene ontologies

We used Grapedia as the source for gene annotations of the
PN40024.12X gff file in this study. The “gene” rows (column 3) were
the only ones kept in the analysis, as the exon/intron structure of
each gene was considered irrelevant to our research objectives.
Additionally, we converted a table of GWAS hits into bed format,
with the first column representing chromosome number and the
second and third columns indicating the start and end positions
of the hit, respectively. The fourth column retained relevant meta-
data. The start and end positions were extended to include a
window of 25 kbp around each significant SNP. Next, we utilized
bedtools intersect [78] to generate a list of genes that intersected
with the 25-kbp range around each GWAS hit, using the reduced
gff file. Finally, we used Blast2GO (https://www.blast2go.com/) to
obtain functional annotations for each gene identifier to provide
additional context.

We used the physical positions of markers significantly asso-
clated with traits as a reference to identify potential candidate
genes. To do this, we selected a bin of 20 kbp around the marker
position, which corresponds to £10 kbp from the SNP position,
based on the LD decay pattern of the panel. The variation in
LD patterns across chromosomes may reflect complex historical
recombination events or selection pressures specific to some
genomic regions. Nevertheless, the +£10-kb bin was selected as
a conservative threshold to avoid false positives (the detection
of genes that are not truly related to significant SNPs). We then
searched for all genes located within this bin as candidate genes.
In cases where there were no genes in the 20-kbp bin, we extended
the search to a larger bin of 50 kbp (+25 kbp from the SNP
position) to identify the closest gene. If the closest gene was
located outside the 50-kbp bin, we considered that the hit was
missing a candidate gene.

We utilized an in-house script to automatically extract GO
information from the Uniprot database [56, 79] for all candidate
genes within the initial 20-kbp bin, using the GET function from
the httr package [80]. We classified the GOs into three main sub-
categories: cellular location, molecular function, and biological
process, and linked them to traits via SNP associations to generate
a trait feature matrix. Only GOs that appeared more than twice
were taken into account. We compared pairwise GO-based trait
correlations with correlations obtained from phenotypic records
and investigated the relative contribution of each trait to the
most frequent GOs found in this study, as shown in Fig. 6A. We
conducted all analyses using R version 4.2.2 and utilized packages
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from the tidyverse family [81] for data processing, including dplyr
[82], and used ggplot2 for visualization [83].
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