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Abstract: Proportional hazard Cox regression models are overwhelmingly used for analyzing time-
dependent outcomes. Despite their associated hazard ratio is a valuable index for the difference
between populations, its strong dependency on the underlying assumptions makes it a source of
misinterpretation. Recently, a number of works have dealt with the subtleties and limitations of this
interpretation. Besides, a number of alternative indices and different Cox-type models have been
proposed. In this work, we use synthetic data, motivated by a real-world problem, for showing the
strengths and weaknesses of some of those methods in the analysis of time-dependent outcomes. We
use the power of synthetic data for considering observable results but also utopian designs.

Keywords: Cox regression models; hazard ratios; marginal Cox regression models; time-to-event;
survival analysis

1. Introduction

A statistical model is a mathematical tool which tries to represent the data-generating
process. As most of the mathematical tools, it bases on theoretical assumptions, which
frequently suppose a simplification of the underlying reality. Crucial point is whether the
model helps us to understand the studied phenomenon or it leads to misinterpretations.

Proportional hazard Cox regressions [1] are overwhelmingly used for modeling time-
to-event outcomes. Their associated hazard ratios (HR) summarize the association between
the variables of interest and the outcome along the follow-up period. Main advantage of
these indices is, perhaps, their ability for including multivariate adjustments. However,
these models have been the focus of a number of papers dealing with some of their
limitations and common pitfalls. Cox regression models mainly assume that, if T is the
random variable modeling the time-to-event of interest, then

P(T > t|X = x, G = g) =S(t|X = x, G = g)

= exp{−Λ0(t) · exp{BX · x + BG · g}}, (1)

where S(·) and Λ0(·) are the so-called survival and baseline cumulative risk functions,
respectively, X is the studied variable (treatment), G a vector of covariates, and BX and BG
are the logarithm of the hazard ratios associated with X and G, respectively.

Hernán [2] highlighted the relevance of the follow-up period in the HR estimation
when the proportional hazard assumption is not hold. Stensrud and Hernán [3] insisted
in the unrealistic assumption of the hazard proportionality in medical studies. Other
authors, however, vindicate the hazard ratio as a useful measure for depicting the average
differences between survival curves, proposing consistent estimators for the resulting
parameter [4,5].

The non-collapsibility [6] of proportional hazard Cox regression models is, perhaps,
more problematic. That is, since beyond the first observed event, the risk sets are comprised
of the subset of individuals who has not previously failed, the immediate consequence is
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that the hazard ratio does not admit individual causal interpretation even in randomized
clinical trials [7]. Or, in other words, if there exist factors affecting the time-to-event outcome
do not included in the model, HRs cannot be identified even when those factors and the
studied treatment were independently drawn.

A number of alternative Cox-type regression models have been proposed in order to
avoid this issue. For instance, Lin and Ying [8] considered the additive model

P(T > t|X = x, G = g) = exp{−Λ0(t) + BX · x + BG · g}.

Similarly, additive-multiplicative models have been considered by Scheike and Shang [9].
MacKenzie et al. [10,11] considered a Cox-type model with the objective of, in the presence
of omitted confounders, having an identifiable parameter. Wang et al. [12] and Martínez-
Camblor et al. [13] considered an identifiable marginal structural Cox-type model. These
models do not parameterize the potential effect of the unmeasured confounder and focus
on the population-averaged hazard ratio. In this sense, the counterfactual is considered
at populational level and the interpretation would be what would have happened with the
outcome if all the population would have been in the treatment/control group .

Besides, there exist a number of alternative indices for summarizing the difference
between survival curves. Royston and Parmar [14] considered the restricted mean survival
time, a measure of the difference of survival time between the treated and control pop-
ulations. Schemper et al. [5] considered several measures based on weighted average of
the hazard ratio, which are interpreted beyond the proportional hazard Cox regression
assumptions. Martínez-Camblor et al. [15] proposed a measured based on the area under
the ROC curve which is the HR when the model is correctly specified and is easy to interpret
in any case.

Data analysis is frequently a trade-off between what we actually want, and what the
data allows us to know. In this work, we use synthetic data for analysing the effect of
a treatment on a time-to-event outcome in presence of both measured and unmeasured
confounding. The data generation was informed by a real-world problem. Particularly, we
emulate a study in which the target was to compare the effectiveness of two procedures
for treating carotid artery stenosis patients: transfemoral carotid artery stenting (TF-CAS),
and a new procedure which use was approved in 2015, transcarotid artery revascularization
(TCAR) [16]. The original study [17] included patients from the Vascular Quality Initiative
(VQI) registry excluding patients who underwent carotid revascularization for reasons
other than atherosclerotic disease or neointimal hyperplasia and those underwent carotid
revascularization combined with another procedure.

This paper aims to show the strengths and weakness of time-to-event analyses. We
focus on the limitations caused by the violations of the standard assumptions, specially,
by the presence of unmeasured confounders. Rest of the document is organized as follows.
In Section 2, we describe the real problem and explain the dataset generation process. Then,
in Section 3, we study the behavior of the two populations (TF-CAS and TCAR) from
different approaches: (i) unadjusted analyses, (ii) methods for considering the effects of
measured confounding, (iii) methods for considering the effects of both measured and
unmeasured confounding based on parametric assignment model, (iv) methods for dealing
with both measured and unmeasured confounding considering marginal structural Cox
models. In Section 4, we use additional information from the data-simulation process and
considered non-reachable analyses. In one hand, we introduce the vector of unobserved
confounders in both the conditional and the marginal Cox regression analyses, and in
the other hand, we use the counterfactual generated times and report the results from a
emulated randomized clinical trial. We discuss the results in Section 5. Finally, we provide
some comments regarding the used software.
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2. The Transcarotid Artery Revascularization Simulated Cohort

Carotid stenosis is treated with a combination of antiplatelet and cholesterol lowering
medications, and procedural revascularization. There are three primary treatments for
carotid revascularization: surgical carotid endarterectomy (CEA), transfemoral carotid
artery stenting (TF-CAS), and a new procedure approved in 2015, transcarotid artery
revascularization (TCAR). This new procedure has been rapidly adopted, however, TCAR
was approved by the FDA without a randomized trial, and no comparative trial is underway.
Therefore, observational studies are the only way to assess TCAR’s effectiveness and safety.
Patients who receive TCAR are often different from patients who undergo CEA or TF-CAS
in ways that are difficult to measure, including procedural selection effects, varying severity
of comorbidity, and characteristics of the carotid lesion.

Among the studies comparing the effectiveness between TF-CAS and TCAR, re-
cently, Columbo et al. [17] used data from the Vascular Quality initiative (VQI—www.
vqi.org), which captures results on more than 95% of patients who undergo TCAR (https:
//silkroadmed.com/tcar-surveillance-project/) for studying perioperative and one-year
rates of stroke or death. Here, we use the distributions obtained in that work for generat-
ing synthetic data and emulate the original problem in a controlled scenario. The data
generation process was complex and included some manual changes. Final data were
not generated from a single parametric model. This process helped us to emulate the
distributions and numbers provided in the previous referred study. We simulated both
time-to-event and censoring times and, appropriately, computed the observed times and
the status at this point. We also simulated a measured covariate. This potentially plays
the role of a score representing a linear combination of the usual measured confounders
(including but not limited to Sex, Age, Race, Symptoms, Comorbidity, or ASA classifica-
tion), and a unmeasured variable (it could include other unmeasured, or even unknown,
factors affecting the outcome and, perhaps, also the treatment assignment, for instance,
Genetic propensity or environmental risk exposures), both two variables were generated
to be related with both the time-to-event and the treatment assignment. To note that
those are not real, and they were not generated for representing, explicitly, any particular
feature of the population but a general measured score. Finally, with the same process,
we generated a variable just related with the treatment assignment which tries to reflect
particular preference of the surgeons or centers for one particular treatment. All variables
were computed with the objective of get the desired scenario. Final data are provided as
online Supplementary Material.

3. Results
3.1. Unadjusted Analyses

The dataset include a total of 35,829 patients, 14,595 underwent TF-CAS and 21,234 TCAR.
During the follow-up (maximum of 12 months), 2168 patients suffered an stroke or died (had
an event), 1166 and 1002 in the TF-CAS and TCAR groups, respectively. Within the first year
after surgery, the overall percentage of having an event was 7.8 (95% confidence interval of
[7.5 to 8.2]): 9.7 [9.2 to 10.2] vs. 6.4 [6.0 to 6.8] for the TF-CAS and TCAR patients, respectively.
Figure 1 shows the Kaplan–Meier approximation for the cumulative distribution functions,
CDF, of the time-to-event in both TF-CAS and TCAR groups.

Time-dependent outcomes use to be characterized through the so-called hazard func-
tion, λ(·). This function provides a dynamic description of the instantaneous risk of having
the event at moment t being at risk until t. That is,

λ(t) = lim
∆→0
P(T < t + ∆|T ≥ t)/∆ = −∂{log[P(T > t)]}/∂t.

Figure 2A depicts the kernel-based estimation [18] for the hazard functions in both
TF-CAS and TCAR groups. Proportional hazard Cox regression models assume that the
quotient of these curves is constant. Since the estimation procedure of the associated HR
(in this case, 1.57 with a 95% CI of [1.44 to 1.71]) gives more weight to those subjects

www.vqi.org
www.vqi.org
https://silkroadmed.com/tcar-surveillance-project/
https://silkroadmed.com/tcar-surveillance-project/


Int. J. Environ. Res. Public Health 2022, 19, 12476 4 of 12

with longer time at risk, the provided time-period HR is a weighted average of the actual
time-dependent hazard ratio function. That is, let λ0(·) and λ1(·) be the hazard functions
of having an event associated with the TF-CAS and the TCAR groups, respectively. Then,
the time-period HR estimated through the standard partial likelihood involved in the Cox
regression model is

wHR =
∫ t f

0

λ1(t)
λ0(t)

dw(t),

where [0, t f ] is the considered follow-up period and w(t) is a complex weighting function
which depends, among other factors, on the distribution of the censoring time and the
unmeasured covariates. Therefore, its interpretation beyond the proportional hazard model
assumptions is not straight forward [19].
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Figure 1. Kaplan–Meier estimations for the observed cumulative distribution functions of dying or
having a stroke in both the TF-CAS and TCAR populations.

Notice that, in general, λx(t) = EGx [λx(t|Gx = g)] (x ∈ {0, 1}), where Gx represents
the (measured and unmeasured) features of the population involved in the problem. That
is, the targeted λx(·) is the averaged risk of the subjects in the population x and, therefore,
the observed behavior of this function depends on the distribution of those characteristic in
the population. They are not exclusively affected by the treatment. Recall that the usual
estimation process based on the optimization of the partial-likelihood function does not
target an estimation of the average hazard ratio but a conditional hazard ratio for the
semiparametric model reported in Equation (1).

Schemper et al. [5] considered to use different values of w(t). For w(t) = 1, in our
data, wHR was 1.54 [1.42 to 1.68]. Besides, the so-called concordance probability reported a
value of 0.61 (highlight the coincidence between the odds, 0.61/0.39 = 1.56, and the hazard
ratio reported by the regular conditional proportional hazard Cox regression estimation).
That is, with a probability of 0.61, patients treated with TF-CAS are expected (at baseline)
to die or having an stroke earlier than patients treated with TCAR.

Finally, the restricted mean survival time [14] directly considers the difference between

the survival curves (RMST(t f ) =
∫ t f

0 [S0(u)− S1(u)]du) avoiding the use of risk or hazard
functions. Its value, −0.336 [−0.396 to −0.275], indicates that the average free of event
time loss in the TF-CAS group during the first year after the procedure in comparison
with the TCAR group was 0.336 months. Notice that, despite the other considered indices,
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RMST has units, which should be reported. Besides, the RMST is a measure referred to the
population not to each particular subject.
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Figure 2. (A) Kernel-based estimation for the risk function in both TF-CAS and TCAR groups.
(B) Violin-plots for the measured covariate by groups. (C) Propensity-score weighted Kaplan–Meier
estimations by groups. (D) Violin-plots for the instrumental variable by groups. (E) Instrumental-
variable adjusted survival curves. (F) Survival curves derived from the marginal model.

3.2. Accounting for Measured Covariates

The role that the potential measured and unmeasured covariates plays in the observed
difference between the studied groups is a major concern for establishing causal effects.
When the covariates are measured, two main strategies use to be adopted. In the first
considered one, we pursue that the initial characteristics of the studied groups have the
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same weight. Therefore, we will compare populations with similar (measured) features.
In the second, we include the potential confounder in the model aiming to remove its effect
on the observed results.

(a). We aim to compare populations with similar (measured) features. In this sense,
we remove (or at least we reduce) the potential selection-bias. The propensity score-based
procedures [20] are commonly used with this goal. First, for each subject, we compute its
probability of being allocated in the treatment (non-treatment) group, and then, we balance
these probabilities in both groups. With this goal, inverse propensity score weighting
(IPSW) [21] and propensity score matching [22] are the most used techniques. Figure 2B
shows the violin-plots for the measured covariate (here, it plays the role of a combina-
tion of the usual measured covariates including Sex, Age, Symptoms, Comorbidity, ASA
classification, among others), Figure 2C shows the IPSW survival curves for both TF-CAS
and TCAR populations [23]. The HR associated with the IPSW was 1.32 [1.21 to 1.44], very
similar to the one provided by the matching procedure, 1.29 [1.17 to 1.142] (12,672 pairs
satisfying the match). On this matched sample, the observed incidence percentages were
9.0 [8.6 to 9.6] vs. 7.6 [7.1 to 8.2] for the TF-CAS and TCAR patients, respectively. The in-
cidence difference was, therefore, 1.4 [0.9 to 1.9]. The value of the weighted hazard ratio
was 1.26 [1.15 to 1.39], and the value of the RMST was −0.21 [−0.28 to −0.15]. With these
techniques, we pursue to fix the distribution of the measured confounders in both the
TF-CAS and the TCAR groups, in this sense, we will be able to estimate parameters based
on populations where the covariate distribution is the same in both considered groups.
Notice that (i) those parameters can be affected by covariates in the same way that in the
unweighted populations, (ii) the resulting population is mainly based on the intersection
of the involved populations.

(b). When we aim to compare the patients in one group with their peers in the
other group. That is, patients with a particular covariate value in the treatment group
are compared with those patients with the same covariate value in the non-treatment
group. Due the ambitious of this task, overall when we have continuous covariate, we
have to make some assumptions. Particularly, we have to model the relationship be-
tween the outcome and the involved variables. Following the proportional hazard Cox
regression model (Equation (1)), we have that the adjusted HR of the treatment condi-
tioned to the measured covariate is 1.35 [1.24 to 1.47]. The well-known interpretation
of this value is that, fixed the value of the covariate, the average hazard of having an
immediate event of the patients in the TF-CAS group is 1.35 times more than the average
hazard that similar patients have in the TCAR group. We evaluate the hazard functions
λx(t|M = m) = EGM [λx(t|M = m; GM = gm)] (x ∈ {0, 1}), where GM includes all the
variables related with the risk of event but M, and therefore a causal interpretation is still
problematic. Besides, we assume that M impacts on the outcome linearly (Cox models
allow some flexibility at this point) and that there is no interaction between the treatment
and the covariate although the interaction terms could be also included in the model.

Doubly-robust inverse probability weighting [24], DR-IPSW, procedures combine
both the inverse propensity score weighting (IPSW) and the inclusion of the the variables
involved in the propensity score construction in the model. These procedures allow
to compare patients on populations with similar characteristics and make comparisons
only among those patients with similar characteristics, and they are more robust against
erroneous specification of the outcome model when the propensity score model is correctly
specified [25]. Here, the provided HR was 1.35 [1.24 to 1.47].

Measured covariate can also be considered in the weighted hazard ratio computa-
tion [5]. The direct adjusted HR average (w(t) = 1) was 1.32 [1.21 to 1.44]. The concordance
probability was 0.57 (odds of 0.53/0.47 = 1.13). Finally, the covariate-adjusted RMST was
−0.221 months [−0.282 to −0.160].
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3.3. Accounting for Unmeasured Covariates (I)

Despite the statistical tools available for dealing with the measured covariates, results
derived from observational studies are always at risk of being influenced by the presence
of unmeasured factors. Originally developed in economics [26], instrumental variable (IV)
procedures help us dealing with unmeasured confounding. An IV is a variable which
provides additional information about the treatment assignment mechanism, and that can
be used in order to identify treatment effects. A valid IV, the instrument, should satisfy
three key assumptions: (1) the instrument has to be related with the treatment assignment,
(2) the instrument is independent of the outcome given the treatment, (3) the instrument is
independent of unmeasured confounders. Besides, IV-based procedures usually require a
fourth assumption related with the homogeneity of the treatment effects (further discussion
about these assumptions can be found, for instance, in Lousdal [27]).

Although there is a number of instrument variable-based procedures, most of them do
not consider Cox regression model particularities (non-collapsibility). Martínez-Camblor
et al. [28] proposed the so-called two-stage residual inclusion-frailty (2SRI-F) algorithm,
which reduces the bias of more standard two-stage procedures. In short, in the first-
stage, 2SRI-F captures information related with the unmeasured confounder, and then
incorporates it in the second-stage. A frailty term [29] helps to deal with the white-noise
generated in the process.

So, in the first-stage, we save the residuals of the linear model,

Treatment = α ·Measured Covariates + β · IV + γ.

Then, in the second-stage, we consider a frailty-Cox regression model which includes
the treatment, the measured covariates, the residuals, and an individual parametric frailty
term. To note that, in the the first-stage, the considered assignment model should always be
linear, even when the studied treatment is binary. Despite binary treatments do not fulfil the
required assumptions, and therefore, the theoretical properties are not guarantee, Monte
Carlo simulations have shown [30] that 2SRI-F provides better results than its competitors.
In this case, the 2SRI-F procedure reported a HR of 1.02 [0.83 to 1.24] (F-statistics associated
with the IV variable was 8,383.23, which indicates a relatively strong instrument).

The average HR (w(t) = 1) resulting of including the measured covariate and
the residuals obtained from the first-stage in the 2SRI-F algorithm reports a value of
1.00 [0.81 to 1.22], with an associated concordance index of 0.5. The equivalent RMST was
−0.027 months [−0.168 to 0.113].

Based on the 2SRI-F algorithm, Martínez-Camblor et al. [31] provided a semi-parametric
procedure for adjusting survival curves for measured and unmeasured covariates. These
curves can also be directly used for estimating the RMST which, in this case, provides a
value of −0.012 months. Figure 2E shows the IV-adjusted survival curves for the TF-CAS
and TCAR patients.

3.4. Accounting for Unmeasured Covariates (II)

Standard two-stage instrumental variable procedures require of strong parametric
and non-parametric assumptions. Besides, the non-collapsibility of the Cox regression
models makes that the derived hazard ratios are not identifiable when an unmeasured
covariate, independently drawn, is affecting the time-to-event outcome. In this case, since
the unmeasured covariate is not involved in the treatment selection process, the IV gets no
information about this covariate from the assignment model. Wang et al. [12] and Martínez-
Camblor et al. [13] proposed different estimators for the so-called marginal structural Cox
regression model. Basically, this model assumes that not the conditional but the marginal
risk function follows a Cox-type model, that is, it assumes the equality

λT
1 (t) = λT

0 (t) · eψ,
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where λT
d (·) (d ∈ {0, 1}) stands for the potential risk function if the unit were exposed to d,

with independence of which the actual exposure was. In practice, the unit is the population
of reference and the underlying model is

EG[S1(t; G = g)] =
{∫

S1(t; g)dFG(g)
}

=

{∫
S0(t; g)dFG(g)

}eψ

= EG[S0(t; G = g)]e
ψ
.

This model is not affected by independent unmeasured confounders and, therefore, it
is identifiable from a randomized clinical trial. The so-called causal hazard ratio [12], eψ, is
at populational level. That is, the counterfacual would be which would have been the behavior
of the population if all (none) subjects would have had the treatment.

The reported unadjusted estimations for the Martínez-Camblor et al. [13] and Wang
et al. [12] procedures were 1.09 [0.86 to 1.39] and 1.08 [0.88 to 1.32], respectively. Furthermore,
when we consider weighting by the measured confounder, they were 1.09 [0.90 to 1.33] and
0.93 [0.75 to 1.14], respectively. Figure 2F shows the curves reported by the weighting
procedure proposed in Martínez-Camblor et al. [13].

4. Non-Reachable Analyses
4.1. Knowing the Unmeasured Covariate

The advantage of synthetic data is that we know the reality underlying the data gener-
ation process. In this case, we have access to the real unmeasured variable values. The pro-
portional hazard Cox regression model, including the measured and unmeasured covariates,
reported a HR of 1.03 [0.93 to 1.13]. The weighted HR (w(t) = 1) was 1.62 [1.50 to 1.76],
with a concordance probability of 0.61, while the RMST adjusted by both measured and
unmeasured covariates was 0.004 months [0.003 to 0.005]. Besides, using the same genera-
tion process, with each observed survival time, we generated its counterfactural, that is,
the time which would have been observed if the patient would have received the opposite
procedure to the one he/she actually received. Figure 3 shows the probability of having an
event when all patients undertake TF-CAS and when all patients undertake TCAR.

4.2. A Randomized Clinical Trial

Finally, we emulate a randomized clinical trial experiment. Each one of the 35,829 patients
is randomly assigned to the TF-CAS or to the TCAR treatment (with probability 1/2). A total
of 17,951 patients were randomly assigned to receive TF-CAS while 17,878 received TCAR.
Kaplan–Meier estimator reported percentages of event of 7.8 [7.3 to 8.2] and 7.5 [7.1 to 8.0] in
the TF-CAS and TCAR groups, respectively. The hazard ratio resulting from the regular pro-
portional hazard Cox regression model was 1.05 [0.97 to 1.15], and in this case, this would be
also the hazard ratio associated with the marginal structural Cox model. The weighted hazard
ratio (w(t) = 1) was 1.02 [0.93 to 1.12] and the RMST was −0.061 months [−0.12 to −0.004].
Figure 4 shows the Kaplan–Meier estimation for the cumulative distribution function for the
TF-CAS and TCAR groups.
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Figure 3. Kaplan–Meier estimations for the cumulative distribution functions of dying or having a
stroke when the whole population undertake TF-CAS / TCAR.
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Figure 4. Kaplan–Meier estimations for the cumulative distribution functions of dying or having a
stroke in the simulated RCT.

5. Discussion

Selection bias is a major issue in the interpretation of the results derived from observa-
tional designs. Besides, if we consider a non-linear model, the non-collapsibility can also be
a relevant issue. In the considered problem, direct unadjusted analyses of the time-to-event
outcome report small but consistent difference between the TF-CAS and TCAR groups.
TF-CAS had 1.4% more percentage of events, during the follow-up, the risk of having an
event in TF-CAS was 50% greater than in the TCAR group. The time lost in the TF-CAS
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group was around 0.3 months. When we consider the measured covariate, the difference
between groups dilutes a little bit. The used indices report hazard ratios around 1.3 and
the time lost for those patients in the TF-CAS group if the measured covariate had were
the same would be 0.2 months. When we try to get some information of the unmeasured
confounder, and incorporate this information in the models, the difference mainly dis-
appear, and the confidence intervals included the no effect value. Curiously, when we
introduce the real unmeasured variable, the weighted hazard ratio returns to the beginning,
with a wHR of 1.6. However, rest of the parameters are also very close to their no effect
value. Discrepancies between HR and wHR were probably caused by misspecifications
in the Cox model (data were not generated from this model). The simulated randomized
clinical trail also reported no difference between the groups. Both potential distribution
functions (Figure 3), and those obtained in the RCT (Figure 4) were very similar and reflect
the (actual) no-effects situation. Of course, data were generated under the no-effect scenario.
Table 1 summarizes most of the numbers (effect sizes measures and their respective 95%
confidence intervals) reported along the paper.

Table 1. Summary. Punctual and 95% confidence intervals for some of measured reported along
the paper: incidence difference (ID), conditional hazard ratio (HR), weighted hazard ratios (wHR),
restricted mean survival times at twelve months (RMST), and marginal hazard ratios (mHR) in the
different considered situations: unadjusted models (Crude), match-sample (Measured (a)), models
adjusted by measured confounders (Measured (b)), models adjusting by both measured and no
measured confounders (Omitted), and results provided by the RCT.

Crude Measured (a) Measured (b) Omitted RCT

ID 3.3 [2.7 to 3.9] 1.4 [0.9 to 1.9] 0.3 [−0.2 to 1.2]
HR 1.57 [1.44 to 1.71] 1.29 [1.17 to 1.42] 1.35 [1.24 to 1.47] 1.02 [0.83 to 1.24] 1.05 [0.93 to 1.12]
wHR 1.54 [1.42 to 1.68] 1.26 [1.15 to 1.39] 1.32 [1.21 to 1.44] 1.00 [0.81 to 1.25] 1.02 [0.93 to 1.12]
RMST −0.3 [−0.4 to −0.3] −0.2 [−0.3 to −0.1] −0.2 [−0.3 to −0.2] −0.03 [−0.2 to 0.1] −0.1 [−0.1 to −0.01]
mHR 1.09 [0.86 to 1.39] 1.09 [0.90 to 1.33] 1.05 [0.97 to 1.15]

Conventional causal inference concerns about an unobservable and relatively unuseful
quantity: what would have happened to one patient if their treatment would have been different
to the one it actually was. The estimation of this quantity is especially complex when the
outcome of interest is a time-dependent variable. In biomedicine, the interest of this
quantity would be to know what is the best treatment to use in future patients, that is,
what we can learn is which would be the effect in patients like those on which we did the
estimation. Therefore, strictly speaking, we are interested in populations. In this sense,
hazard ratios provided by the conditional proportional hazard Cox regression models
derived from adequate design can have causal interpretation, although, for doing that, we
have to consider the marginal structural Cox regression model and to consider a population-
averaged causal interpretation.

We also wanted to highlight here the difference between using adjusted and weighted
models. Perhaps, the usual language used for referring to those procedures does not help in
highlighting the difference between them. However, we would like to remark the different
philosophies behind both approaches.

In this work, we have shown that the presence of unmeasured confounder can produce
considerable bias in the observed results. In the statistical literature, there exist a number
of tools, which helps to summarize and interpret time-to-event outcomes. All of them
have different properties, which help to understand what the underlying data generation
process could have been. We also have some procedures for dealing with unmeasured
covariate although those frequently require strong assumptions and/or particular models.
In practice, one never knows how the unmeasured factors can alter the observed reality
and some caution in the interpretation is always welcome. Usually, more raw measures,
such as the incidence differences or the restricted mean survival time, require less assump-
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tions, and therefore, they are more robust. Unfortunately, additional conditions have to be
introduced in order to deal with measured and unmeasured confounding. Hazard ratios
derived from proportional hazard ratio Cox regression models are popular and easy to in-
terpret. They can directly accommodate potential confounders, and other alternatives such
as interactions or time-varying outcomes. The subtleties around its interpretation when the
underlying model assumptions are violated is, without doubts, its major handicap.

We do not think that statistical science tolerates universal recipes. However, we
include some tips for dealing with time-to-event-outcomes:

• Report raw survival curves and raw measures such as incidence difference and/or
RMST, including confidence intervals.

• Report the HRs for the unadjusted model, also the results including different covari-
ates. Consider the use of propensity score weighting and/or matched samples.

• In general, consider the HR as a measure of the difference between the distributions, not
with a close interpretation which strongly depends on the underlying assumptions.

• [Just in case] Consider different IV procedures, including marginal models, and inter-
pret the results with caution.

Perhaps, the main conclusion of this document is (again) that we should thus focus
on describing accurately how the study was conducted, what problems occurred, what data were
obtained, what analysis methods were used and why, and what output those methods produced [32].

6. Computational Details

Fortunately, nowadays, there exist a wide variety of resources that allow to implement
most of the statistical analyses. Here, we have use the environment R (www.r-project.org).
Particularly, we use the package survival [33], developed by Therneau et al., which includes a
number of procedures for dealing with time-dependent outcomes including regular propor-
tional hazard Cox regression models with and without frailty terms. The weighted hazard
ratio and the restricted mean survival time difference were computed with the package
coxphw [34] and survRM2 [35], respectively. The functions for computing the estimation
of the marginal structural Cox regression model proposed by Martínez-Camblor et al. [13]
were provided as online Supplementary Material in that paper. For the estimator proposed
by Wang et al. [12], we used the implementation provided in the manuscript. The package
muhaz [36] was used for estimating the hazard functions provided in Figure 2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph191912476/s1.
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