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This paper focuses on the dynamics of a domain wall (DW) displacing along an elliptically bent nanowire
(NW) under the action of spin-polarized electric currents and external magnetic fields. Our results evidence that
a curvature gradient induces an exchange-driven effective tangential field responsible for pinning a DW at the
maximum curvature point in the NW. However, the competition between the torques produced by the external
stimuli and the curvature-induced effective fields changes the DW equilibrium position and phase. Therefore,
when the external stimuli are below a certain threshold, the DW follows a damped harmonic oscillation
around the new equilibrium position. Above this threshold, DW displaces along the NW under an oscillatory
translational motion.
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I. INTRODUCTION

Magnetic nanowires (NWs) are promising candidates
to create a new generation of spin-based devices at the
nanoscale. Their geometry-induced strong uniaxial anisotropy
parallel to the NW axis [1] allows us to guide domain walls
(DWs) along their longer dimension through external mag-
netic fields and/or electric currents [2–4]. The proper control
of the DW dynamics is a key point for developing tech-
nologies that use these magnetization textures as information
carriers [5,6], nano oscillators [7,8], logic gates [9–11], and
nanoantennas [12]. Consequently, controlling the DW dynam-
ical response to external stimuli is a very hot topic in material
sciences.

Tuning DW dynamical properties by means of geometrical
considerations is a well-established strategy. One example
in this direction is the shaping of the NW cross section. In
magnetic nanostripes, there exists a threshold for the intensity
of the external stimuli known as Walker breakdown [13,14], at
which the DW drastically alters its dynamical behavior. Below
this limit, the DW propagates constantly and its velocity is
linearly proportional to the intensity of the stimuli. Above
this limit, the DW exhibits an oscillatory behavior along the
stimuli direction and the average velocity losses its linearity.
By shaping the NW cross section, the Walker limit can be
either suppressed (circular cross section [15]) or engineered,
i.e., tuning the amplitude and frequency of the oscillations
(polygonal cross sections [16]).

*bittencourt.g.h.r@gmail.com

Bending NWs is an alternative strategy to tune DW dynam-
ical properties that has recently attracted lots of attention. In
this case, the Walker regime is presented even for NWs with
circular cross sections. In bent NWs, the origin of the Walker
breakdown is in the curvature-induced exchange torque, while
in straight ones the dipolar energy coming from the cross-
section shape is the source of this effect. Importantly, in
NWs with a constant curvature, the threshold for the Walker
breakdown as well as the amplitude of the oscillations can
be controlled by means of the curvature [17–19] but not the
frequency. Nevertheless, combining both bending and shaping
cross sections, e.g., bent nanostripes, can be used to control
the frequency of the oscillations. An interesting result is that in
bent nanostripes the external stimuli exhibit an extra threshold
in which the DW reorients by changing its phase [20].

Introducing a curvature gradient in bent NWs provides
extra and intriguing dynamical properties to the DW (or
other localized objects such as vortices or skyrmions) mo-
tion. In this case, it was shown that their centers of mass
displacing along a low-dimensional nanomagnet with a vari-
able mean curvature would suffer the effects of an effective
force [21] due to a curvature-induced effective anisotropy and
Dzyaloshinskii-Moriya interactions [22,23]. This curvature-
induced effective force is responsible, for example, for
exciting phenomena such as the attraction and/or repulsion of
skyrmions by a curved bump in a nanoshell [21,24,25] and
the displacement of transverse DW along a helicoidal NW
even in the absence of external fields or electric currents [26].
In particular, Yershov et al. [27] analyzed the existence of a
pinning potential at the NW maximum curvature region in
a torsionless NW with variable curvature. In that paper, the
authors studied the DW motion near the maximum curvature
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region, obtaining DW harmonic decaying oscillations [27].
The works cited above evidence that an adequate choice of the
NW geometric and magnetic parameters allows the control of
the DW position, velocity, and phase.

Motivated by these results, through analytical and nu-
merical calculations within the Thiele approach of a rigid
DW, we deeply analyze the dynamics of a DW displacing
along an elliptically curved NW under the action of electric
currents and magnetic fields. Since this system presents a
curvature gradient, the emergence of an effective exchange-
driven curvature-induced tangent magnetic field is responsible
for pinning the DW near the maximum curvature region of the
NW, as also observed by Yershov et al. [27]. We also show
that the DW equilibrium position depends on the competition
between the torques produced by the external stimuli and the
exchange-driven curvature-induced tangential effective field.
Additionally, we obtain that the DW follows a damped har-
monic oscillation if the external stimuli are below a critical
threshold. Above this threshold value, the DW propagates
following an oscillatory motion along the NW with variable
amplitude.

This work is organized as follows: Section II presents the
theoretical model adopted in this work. In Sec. III, we present
the DW dynamics in the absence of external stimuli while
Secs. IV and V describe the DW dynamics under an external
current or magnetic field, respectively. Our conclusions are
presented in Sec. VI.

II. THEORETICAL MODEL

A. General formulation

The geometrical description of an arbitrary curvilinear NW
without torsion can be done by adopting an orthogonal basis
(μ̂, η̂, ẑ), where η̂ is an azimuthal-like direction, which points
tangent to the NW axis, and μ̂ is a radial-like unitary vector
pointing outward from the bend, perpendicular to the NW axis
[see Fig. 1(a)]. The third unitary vector of the considered basis
points along the z-axis direction, and can be defined from
ẑ = μ̂ × η̂ and therefore, vectors μ̂ and η̂ lie in the xy Carte-
sian plane. Under this framework, a NW can be described as
r(μ, η, z) = (x, y, z), where x ≡ x(μ, η) and y ≡ y(μ, η). In
addition to the unitary vectors, it is important to determine the
length element in a curvilinear orthogonal basis along an ar-
bitrary direction ξ̂ , which is formally defined as dqξ = hξ dξ .
Here, hξ = √

(∂r/∂ξ ) · (∂r/∂ξ ) is the modulus of the metric
factor associated to the ξ -direction and ξ̂ = h−1

ξ ∂r/∂ξ .
This paper considers a thin wire with a circular cross

section narrow enough to host a transverse DW when con-
sidering a permalloy NW [28]. It is worth noting that other
types of DWs could be nucleated in thicker NWs, such as
vortex-antivortex and Bloch point walls [28,29]. In our paper,
we use the micromagnetism theory to analyze the dynamics of
a rigid transverse DW (fixed shape and width) during its dis-
placement along the NW. Therefore, each magnetic moment
of the system follows the same dynamics of the DW center.
The transverse DW magnetization profile can be written in
terms of the arbitrary curvilinear basis as m = sin � sin φ μ̂ +
cos � η̂ + sin � cos φ ẑ, where m = M/Ms, and Ms is the sat-
uration magnetization. The parameter � is the angle between

FIG. 1. (a) Representation of the DW magnetization profile lying
in an elliptical NW with center located at O (Cartesian origin).
(b) Set of hyperbolas (black dashed lines) that intersect orthogonally
to the ellipse (red line), defining different values for the η coordinate.
(c) Representation of the tangential (η̂) and normal (μ̂) directions on
the elliptical NW delimited by the hyperbola segments defined by
η = −ψ and η = ψ . (d) Illustration of three ellipses with perimeter
P = 2000 nm and different μ values. (e) Curvature C of complete
ellipses as a function of η for different μ values.

m and the azimuthal-like unitary vector η̂, while φ is the
angle between the magnetization projection in the μ z-plane
and the vector ẑ, as shown in Fig. 1(a). Furthermore, as the
dimensions of the NW cross section are much smaller than
its length, we can assume that the magnetization distribu-
tion varies only along the NW length [m = m(η)], and it
is uniform along the μ̂ and ẑ directions. This rigid trans-
verse DW profile can be fitted by the ansatz � ≡ �(η) =
2 arctan{exp[(q(η) − q0)/δ]}, with q(η) ≡ qη being an arbi-
trary position on the NW, and q0 ≡ q(η0) defines the position
of the DW center, where �(η0) = π/2. Additionally, πδ is
the DW width. From the adopted model, the DW velocity is
determined by

v = dq0

dt
= −δ

(
d�

dt

)
�=π/2

. (1)

The magnetization dynamics under an external magnetic
field and/or an electric current is described by the Landau-
Lifshitz-Gilbert (LLG) equation with spin transfer torque
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adiabatic and nonadiabatic terms,

dM
dt

= −γ M × Heff + α

Ms
M × dM

dt
− u

∂M
∂qη

+ βu

Ms
M × ∂M

∂qη

, (2)

where γ is the gyromagnetic ratio and α is the damping
parameter. Each term of the above equation is associated with
the torque produced by effective magnetic fields or currents
on the magnetization. The first and second terms on the right
side of Eq. (2) are related to the torques produced by the
effective field Heff and the Gilbert damping, respectively.
Here, the effective field can be written in a curvilinear basis
as Heff = Heff μ μ̂ + Heff η η̂ + Heff z ẑ. For simplicity, we con-
sidered a Permalloy NW, therefore anisotropy vanishes and
then Heff includes the external field H, and the effective fields
produced by exchange Hex and dipolar Hd interactions, that
will be presented after in this text. The third and fourth terms
on the right side of Eq. (2) are associated respectively with
the adiabatic and non-adiabatic spin transfer torques. Here,
β is the phenomenological non-adiabatic spin-transfer param-
eter, u = gJeμBP/2eMs has velocity dimension and depends
on an electric current Je injected into the magnetic sample,
g is the Landé factor, μB is the Bohr magneton, P is the
spin-polarization factor of the electric current, and e is the
electron charge. The adopted magnetic parameters for Permal-
loy are [18,20,30]: a saturation magnetization Ms = 813 erg
G−1 cm−3, an exchange stiffness A = 1.07 × 10−6 erg/cm.
We use a damping constant α = 0.01, and the non-adiabatic
spin transfer torque parameter β = 0.04. Finally, we consider
πδ = 33 nm, which corresponds to the width of a transverse
DW in a NW with a diameter of 30 nm [28].

In the rigid transverse DW model, the LLG equation can
be compacted into the form dM/dt = −γ�, with � being
the total torque resulting from all relevant interactions acting
at the DW center. When written in the (μ, η, z)-coordinate
system, the total torque is given by

�μ,η,z = Ms

⎡
⎢⎣

−(
Heff η + α

γ
�̇ + βu

γ δ

)
cos φ

Heff μ cos φ − Heff z sin φ − α
γ
φ̇ − u

γ δ(
Heff η + α

γ
�̇ + βu

γ δ

)
sin φ

⎤
⎥⎦. (3)

It is convenient to represent the total torque in a spherical
coordinate system (ρ, �, φ) lying in the curvilinear basis,
as depicted in Fig. 1(a). For this purpose, the total torque
acting at the DW center can be rewritten as � ≡ �ρ,�,φ =
R(π/2, φ)�μ,η,z, where the transformation matrix R(�,φ)
reads

R(�,φ) =
⎡
⎣sin � sin φ cos � sin � cos φ

cos � sin φ − sin � cos � cos φ

cos φ 0 − sin φ

⎤
⎦.

Therefore, the total torque can be expressed as

�ρ,�,φ = Ms

⎡
⎣

0
Heff z sin φ − Heff μ cos φ + α

γ
φ̇ + u

γ δ

−(
α
γ
�̇ + Heff η + βu

γ δ

)
⎤
⎦. (4)

From the LLG equation, it is possible to obtain dynamical
equations for the angles φ and � as follows [14]:

�̇ = − γ

Ms
��, φ̇ = − γ

Ms
�φ. (5)

Using the expression of DW velocity defined in Eq. (1) and
substituting Eq. (4) in Eqs. (5), we obtain

v = γ δ

1 + α2

(
αHeff η + u(1 + αβ )

γ δ
− �eff η

Ms

)
,

φ̇ = γ

1 + α2

(
Heff η + u(β − α)

γ δ
+ α

Ms
�eff η

)
, (6)

where �eff η = Ms(Heff μ cos φ − Heff z sin φ) is the torque pro-
duced by the effective field on the DW center along the η

direction.
To perform a complete analysis, we need to determine

the dipolar and exchange contributions to Heff . The dipo-
lar contribution can be obtained by adopting the shape
anisotropy approximation: Hd = −4π (NμMμ μ̂ + NηMη η̂ +
NzMz ẑ), where Nμ, Nη, and Nz are the demagnetizing fac-
tors [31] associated to the μ̂, η̂, and ẑ directions, respectively.
The torque produced by Hd on the DW center is evaluated
as �d = −2πM2

s (Nμ − Nz ) sin(2φ) η̂. It is worth noting that
Nμ = Nz for NWs with a circular cross section [31] and,
consequently, �d = 0. This result also applies to a NW with a
polygonal cross section with small area [16].

Finally, the exchange effective field is given by [20] Hex =
(2A/Ms)∇2m, where ∇2m = ∇(∇ · m) − ∇ × (∇ × m) is
the Laplacian operator of m written in the adopted curvilin-
ear system. The explicit equations describing the exchange
effective field are presented in the Appendix. All analytical
results developed in this section for a head-to-head Néel DW
can also be applied to a tail-to-tail DW, just by implementing
the transformation δ → −δ.

B. Elliptically bent NW

From the general model described above, we can analyze
the DW dynamics in the particular case of an elliptically bent
NW whose geometrical description can be done by adopting
the following parametrization:

x = r coshμ cos η, y = r sinhμ sin η. (7)

Here a = r cosh μ and b = r sinh μ are the ellipse semi-
axes, with a � b and μ � 0. When parameter μ is fixed
and η varies continuously in the interval [−π, π ], we obtain
a complete ellipse. The ellipse eccentricity is intrinsically
associated with μ. That is, the greater the value of μ, the
smaller the ellipse eccentricity. In this way, the eccentricity
vanishes for μ → ∞ and the NW geometry presents the shape
of a circumference [see Fig. 1(d)]. On the other hand, when
η is fixed and μ varies from 0 to ∞, the parametrization
given in Eq. (7) describes a hyperbola segment that orthogo-
nally intersects the associated ellipse. The intersection point
defines the localization of the η coordinate on the ellipse
[see Fig. 1(b)]. In this context, η determines an arbitrary
position along the NW length. The unitary vectors that de-
termine the orthogonal (μ̂) and tangential (η̂) directions are
depicted in Fig. 1(c) for an arbitrary point on the NW. Ex-
plicitly, we have μ̂ = r(cos η sinh μ x̂ + sin η cosh μ ŷ)/h and
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η̂ = r(− sin η cosh μ x̂ + cos η sinh μ ŷ)/h, where the metric
factors of the system are

h ≡ hη = hμ = r

√
cosh (2μ) − cos (2η)

2
. (8)

To properly describe geometry-induced effects on the DW
dynamics, it is convenient to evaluate the ellipse curvature.
Following the formalism presented in Ref. [22], we obtain
the normalized curvature C(μ, η) = sinh(2μ)/[cosh(2μ) −
cos(2η)]. The behavior of C is depicted in Fig. 1(e), where we
present the local curvature as a function of η for ellipses with
fixed perimeter, and μ = 0.5 (red line), μ = 1 (blue-dashed
line), and μ = 2 (green line). It can be noticed that in all cases
the maximum curvature is associated with η = 0 and η = π ,
while the points presenting minimum local curvature values
are located at η = π/2 and η = −π/2. Additionally, due to
the decrease in the ellipse eccentricity when μ increases, we
have that limμ→∞ C = 1.

It is important to highlight that in this paper we are not
considering a closed elliptical NW, but a section of an ellipse.
If the NW were a complete ellipse, we would have a magnetic
NW with at least two DWs, an issue out of the scope of our
paper. We analyze specifically bent NWs whose associated
ellipses have a fixed perimeter P = ∫ π

−π
h dη = 2000 nm.

Therefore, the NW length L is a fraction of this perimeter that
depends on the bounding hyperbola segments characterized
by η = ψ and η = −ψ [see Fig. 1(c)], that is, L = ∫ ψ

−ψ
hdη.

In this paper, we consider ψ = 0.6π , and then η ranges from
−0.6π to 0.6π . In this way, the NW length associated with
μ = 0.5, 1.0, 2.0, and 4.0 are, respectively, L ≈ 1261 nm,
1224 nm, 1203 nm, and 1200 nm. It is important to note
that parameter r is intrinsically associated with the ellipse
semiaxes a and b. Therefore, for a given value of μ and P ,
r is implicitly determined.

Now, aiming to perform a more detailed analysis of the
dynamics of the system, we determine the exchange effective
field acting on the center of a head-to-head Néel DW lying on
the elliptic NW. Therefore, from Eqs. (A2)–(A4), we obtain

Hex μ = −2A

Ms

{
2C2(μ, η0)

[
cos(2η0) + cosh(2μ)

r2 sinh2(2μ)
sin φ

− sechμ

rδ

√
1 + csch2μ sin2 η0

]
+ sin φ

δ2

}
, (9)

Hex η = −2
√

2 sin(2ηo)
A

Msrδ

(C(μ, η0)

sinh(2μ)

)3/2

(10)

and

Hex z = − 2A

Msδ2
cos φ, (11)

where C(μ, η0) is the local normalized curvature of the el-
lipse, evaluated at η = η0 (DW center position) for a given μ.
Therefore, one can conclude that in addition to the normal
component Hex μ and the component Hex z of the exchange
effective fields (as we observed for DWs on a circularly bent
NW [20]), here we also obtain a tangential component of the
exchange effective field Hex η. This tangential field emerges
from the exchange-driven curvature-induced effective inter-
actions [22] and vanishes at the positions with maximum and

FIG. 2. (a) Exchange energy Eex as a function of the DW position
η0 and phase φ for an elliptical NW with μ = 0.5. (b) Behavior of
Eex as a function of the DW position η0 for φ = π/2. (c) Behavior
of the DW in the absence of external stimuli developing harmonic
decaying oscillations around η0 = 0.

minimum curvatures along the NW length. Because the po-
sition with minimum curvature represents the point at which
the DW presents its maximum energy [see Fig. 2(b)], it is an
unstable equilibrium point. Therefore, Hex η is responsible for
inducing a DW motion along the NW even in the absence of
external stimuli, bringing it to the stable equilibrium position
at the maximum curvature point. This DW pinning has been
previously described by Yershov et al. [27]. Finally, as ex-
pected, one can notice that for a circular geometry with radius
R (μ → ∞), which presents a constant curvature, there is no
exchange-driven tangent effective field, that is,

lim
μ→∞ Hex μ = 2A

Ms

[
2

Rδ
−

(
1

δ2
+ 1

R2

)
sin φ

]
, (12a)

lim
μ→∞ Hex η = 0, and lim

μ→∞ Hex z = − 2A

Msδ2
cos φ. (12b)
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III. DW DYNAMICS IN THE ABSENCE OF
EXTERNAL STIMULI

Aiming at having some preliminary perspectives on the
DW dynamics, we analyze the DW energy as a function of
its position (η0) and phase (φ) along the NW in the absence
of external stimuli. As previously reported in bent NWs with
circular cross sections [17,27], the main contribution to the
total energy responsible for the DW dynamic behavior is
the exchange interaction, given by Eex = ∫

NW Eexdqη, where
Eex = −(1/2)M · Hex is the exchange energy density and the
integral is performed over the NW length. Numerical results
for Eex as a function of η are depicted in Fig. 2(a), for μ = 0.5.
One can notice that the minimum energy is obtained when
the DW is located at η0 = 0 (the curvature maximum) and
φ = π/2 (DW center is pointing outward of the bend). Addi-
tionally, the maximum energy points corresponds to a DW at
η0 = ±π/2 (minimum curvature points) and φ = −π/2 (DW
pointing inward of the bend). Therefore, one can conclude that
η0 = 0 and φ = π/2 represent the equilibrium configuration
for the DW, in agreement with results presented in Ref. [27].
We have also analyzed the influence of the ellipse eccentricity
on the DW exchange energy in the specific case where the
DW phase is φ = π/2. Main results are depicted in Fig. 2(b)
for NWs with μ = 0.5 (red line), μ = 1.0 (blue-dashed line),
and μ = 2.0 (green line). It can be noticed that the potential
well around η0 = 0 and φ = π/2 becomes deeper for more
eccentric ellipses and vanishes for large μ values.

In the absence of external stimuli (H = 0 and u = 0),
the DW motion is purely determined by the action of a
curvature-induced effective field and the damping effects. By
considering that the DW is initially near the maximum cur-
vature point, we numerically solved Eqs. (6) to analyze the
DW position and phase as a function of time. Main results are
illustrated in Fig. 2(c), from which it is possible to verify that
the DW describes harmonic decaying oscillations, reaching its
equilibrium position at η0 = 0 and φ = π/2.

The observed harmonic damped oscillations are associated
with the existence of a exchange-driven curvature-induced
effective field, which works as a restoring field that tends to
bring the system to its equilibrium position. This restoring
field can be determined by expanding the tangential compo-
nent of the exchange field for small displacements around
η = 0, obtaining the so-called harmonic approximation to the
tangential exchange field (HHA

ex η). Therefore, from Eq. (10), we
obtain

HHA
ex η = −κμη0 , κμ = 2A

Msrδ
csch3μ. (13)

Figure 3 illustrates the behavior of Hex η (blue line) as a
function of η0 for NWs with different eccentricities. A linear
fit of HHA

ex η (red-dashed line) evidences that the magnitude
of Hex η increases as a function of η0 inside the interval
[−ηe, ηe] (black lines), and in this case, the DW moves under
the so-called elastic regime. We observe that the harmonic
approximation for the restoring field agrees well with Hex η

even for displacements η0 ∼ 0.1π rad. Nevertheless, beyond
the elastic regime Hex η decreases with η0 and the harmonic
approximation cannot be used to describe the DW motion.

FIG. 3. Tangent exchange field Hex η as a function of the DW
position η0 for μ = 0.5 (a), μ = 1.0 (b), μ = 2.0 (c), and μ = 4.0
(d). The black vertical lines delimit the elastic regime in which the
magnitude of Hex η increases with η0. The dashed red line depicts
the fitting of the harmonic approximation (HHA

ex η) for small DW
displacements.

One can also notice that the strength of Hex η increase as μ

decreases.
The above-described results suggest that we can write a

dynamic equation for the DW motion in an analogy with a
damped harmonic oscillator. That is, under the absence of
external stimuli, the DW moves around the point of maximum
curvature analogously to a mass-spring system (see Fig. 4).
Therefore, when the DW displaces in a region where the
linear regime is valid, it moves under the action of a restor-
ing field, which vanishes in the position of the NW having
maximum curvature. In this case, κμ can be interpreted as
an elastic constant that increases with the NW eccentricity.
For describing the DW dynamics, we focus on the φ com-
ponent of the torque given in Eq. (4), which is responsible
for the fields that have components along the direction tan-
gent to the NW. Because H = 0 and u = 0, we obtain that
�φ = −Ms[(α/γ )�̇ + Hex η], where �̇ = −(h/δ)η̇0. In this
case, the only fields acting along the η direction are Hex

FIG. 4. Analogy between the DW motion in a bent NW and
a mass-spring system. A DW in the point of maximum curvature
corresponds to the spring without deformation. Red dots represent
the DW center.
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and −(αh/γ δ)η̇0. Thus, for small displacements around the
point of maximum curvature, we can assume that the DW
propagates following Newton’s second law. This assumption
allows us to write

m η̈0 = −κμη0 − bμη̇0, (14)

where m can be interpreted as a DW effective inertial term.
Additionally, bμ = (α/γ δ)h ≈ (α/γ δ)r sinhμ. The formal
solution of Eq. (14) is

η0(t ) = e−tβμ
(
C1et

√
β2

μ−ω2
0 + C2e−t

√
β2

μ−ω2
0
)
, (15)

where βμ = bμ/2m is the damping factor, ω0 = √
κμ/m is

the natural frequency of the system, that is, the frequency
that the oscillator would present in the absence of damping.
The constants C1 and C2 can be determined from the initial
conditions. For a complete description of the oscillatory char-
acter of the DW motion, we need to determine ω0 from the
solutions of Eqs. (6) in the absence of external stimuli and
consider α = 0. Under these assumptions, for small displace-
ments around η = 0 and φ = π/2, we obtain the DW position
as η0(t ) = c1eiω0t + c2e−iω0t , with ω0 given by

ω0 = 2Aγ

Msr2 sinh3 μ

√
2r

δ
coshμ − coth2μ. (16)

It is worth noting that ω0 depends only on intrinsic mag-
netic and geometric parameters of the NW. As expected, due
to the decrease of κμ as a function of μ, the natural fre-
quency of the system decreases when the ellipse eccentricity
decreases, in such a way that the DW oscillatory frequency
practically vanishes for μ ≈ 4. From the adopted analogy, we
define the DW effective inertial term as m = κμ/ω2

0, resulting
in

m = Msr3sinh3μ

2Aγ 2δ
(

2r
δ

coshμ − coth2μ
) . (17)

One can observe that m increases asymptotically as a
function of μ, reaching the maximum value limμ→∞ m =
MsP3/[16Aπ2γ 2(P − πδ)] ≈ 6.3 × 10−16 Oe × s2 for μ �
4 (circularly bent NW with curvature radius R). We high-
light that the adopted analogy considers the curvature-induced
magnetic field as the effective force acting on the DW, and
then this inertial term has the dimension of Oe × s2. Nev-
ertheless, one can obtain the DW mass in kg by observing
that Ms H/R corresponds to the effective tangential force per
volume acting on the DW center in an NW with μ � 4.
Furthermore, Rη̈0 is the tangential acceleration. Thus, the
mass per volume, M, is given by M = m(Ms/R2), and the
estimated DW mass is MVDW = 1.3 × 10−23 kg, where VDW

is the DW volume. One can observe that the obtained value
is of the same order as other theoretical [19] and experi-
mental [32] predictions previously reported for thicker wires.
Another important point to be highlighted is that the here-used
inertia-based DW mass definition is fundamentally different
from the usual mass determined by Döring [33], who used the
Lagrangian formulation to determine the velocity-dependent
micromagnetic DW energy [19,33,34]. Finally, it is also worth
noticing that the obtained expression for the DW inertial term
is not valid for μ � 0.1. In this case, ω0 and m present dis-
continuities due to the very large eccentricity of the elliptical

FIG. 5. Weak damped oscillations for μ = 0.5 (a), μ = 1 (b),
and μ = 2 (c). The strong damped regime is depicted in (d) for
μ = 4. Here, red lines are the solution obtained using the harmonic
approximation, while the dashed blue lines are the solutions obtained
from the numerical evaluation of the complete dynamics equations.
The DW starts from the rest at the position η = π/16.

NW, where the rigid transverse DW assumption is not valid
anymore.

Now, to better understand the DW motion described by
Eq. (15), we can perform an analysis for two particular cases
regarding the damping. These two cases can be separated
by the critical damping βμ = ω0, value at which the system
returns to the steady state as quickly as possible, with no
oscillations. First, we investigate the underdamped regime
(UD), which occurs for βμ < ω0, characterized by oscillations
with amplitude gradually decreasing to zero. In this case, the
formal solution given by Eq. (15) can be expressed as damped
periodic oscillations described by

η0(t ) = Ae−tβμ cos
(
t
√

ω2
0 − β2

μ − ζ
)
, (18)

where A = η0(0) sec ζ . Assuming η̇0(0) = 0 as the initial

condition, we obtain ζ = arccos(
√

ω2
0 − β2

μ/ω0). In the elas-

tic regime, there are positions occupied by the DW where the
linear relation between Hex η and η is not valid. Therefore, we
compare the DW position obtained from the UD harmonic
oscillator approach with that predicted by the LLG equation.
For this purpose, we obtain the behavior of η0(t ) from both
the analytical approach given by Eq. (18) and the numerical
solution of Eqs. (6) under initial conditions η0(0) = π/16
and φ(0) = π/2. Our results are depicted in Figs. 5(a)–5(c)
for μ = 0.5, 1, and 2, respectively. One can observe that
the comparison between the harmonic oscillator analogy (red
line) and the numerical solution of the LLG equation (blue-
dashed line) evidences excellent agreement for μ = 1 and
μ = 2. However, for μ = 0.5, the frequencies obtained from
these two solutions are slightly different in such a way that
the predicted DW positions are different. This difference oc-
curs because the length �ηe of the elastic regime diminishes
as μ decreases (see Fig. 3). Therefore, a better agreement
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between the harmonic analogy and the numerical solution
of LLG emerges if we consider a smaller initial amplitude.
Additionally, our results also evidence the decrease in the DW
oscillation frequency as a function of μ. That is, the smaller
is the ellipse eccentricity, the lower is the DW oscillatory
frequency.

The second case we can analyze is the overdamped regime
(OD), which is obtained for βμ > ω0. In this case, the DW
coordinate exponentially decays to the equilibrium position
with no oscillations. To better understand this OD regime,
we need to determine the constants C1 and C2 in Eq. (15).
Therefore, assuming as initial condition η̇0(0) = 0, we obtain

C1 = η0(0)

2

⎛
⎝1 + βμ√

β2
μ − ω2

0

⎞
⎠, (19a)

C2 = η0(0)

2

⎛
⎝1 − βμ√

β2
μ − ω2

0

⎞
⎠. (19b)

We have also compared the results obtained from the
damping oscillation approach and the numerical solution of
the LLG equation. The results obtained for μ = 4, with initial
conditions η0(0) = π/16 and φ(0) = π/2, are depicted in
Fig. 5(d), where one can notice that the DW goes to its equi-
librium position with no oscillations. Therefore, one conclude
that the ellipse eccentricity determines the coefficient of the
exponential decay of the DW position.

It can be observed that the UD and the OD regimes are
separated by a critical damping factor βμ = ω0. This relation
allows us to find the Gilbert damping of the magnetic NW
from the following expression

α = 4γ Acsch4μc

Msr2ω0
, (20)

where μc is associated with the ellipse eccentricity that sepa-
rates the UD and the OD regimes. Therefore, although there
are different methodologies to evaluate the value of α, Eq. (20)
provides an interesting alternative for experimental determi-
nation of the Gilbert damping factor of a magnetic NW. That
is, by varying the ellipse eccentricity and analyzing the DW
oscillations, one can look for the approximated value of μc

that produces a transition between the UD and OD regimes.
When μc is obtained, Eq. (20) can be used to determine a
valid α value.

We highlight that although the damping factor obtained
from the mechanical analogy (β) depends on α, one cannot in-
terpret the damping parameter of the magnetic system as static
or dynamic friction coefficients of its mechanical counterpart.
Additionally, the phenomenology described here could also
be analyzed from an analogy with other damped harmonic
systems, such as, for instance, a simple pendulum in a gravity
field [32].

IV. DW DYNAMICS UNDER A SPIN POLARIZED
ELECTRIC CURRENT

After analyzing the oscillatory behavior of a DW displac-
ing in an elliptic NW in the absence of external stimuli,
we can describe the effects that electric currents or mag-

FIG. 6. The DW angular position as a function of time for dif-
ferent electric current intensities (which corresponds to different u
values) for NWs with μ = 0.5 (a), μ = 1 (b), μ = 2 (c), and μ = 4
(d). Red lines depict the dynamics in the pinning state, while the
dashed blue lines refers to the unpinning DW.

netic fields generate on the DW dynamics. The extra torque
produced on the DW due to the inclusion of an external
stimulus can be used for two main purposes: to control
the DW stationary position, or to unpin the DW with the
aim to propagate it further from the region of maximum
curvature.

Because most of technological propositions demanding
the control of the magnetization properties consider current-
driven mechanisms, we will start analyzing the effects of the
application of an electric current on the properties of a DW
displacing in an elliptical NW. It is worth noticing that consid-
ered NW consists of a curvilinear system that does not present
torsion. Therefore, there is no effect on the adiabatic and non-
adiabatic terms of the LLG equation that changes the behavior
of the DW dynamics [19]. Additionally, we are dealing with
a magnetic system within the limit of high magnetic moments
and with sizes much larger than the lattice spacing. In this
context, we expect that the conduction electrons behave as in
the model proposed by Zhang and Li [35], where their mag-
netic moments are almost parallel to the position-dependent
NW magnetization.

The analysis of Eqs. (6) reveals that the current acts in
a different way on the translation and on the rotation mo-
tions of the DW. That is, current acts as an effective field
u(1 + αβ )/(αγ δ) that influences the DW translation veloc-
ity v. But the rotation of the DW around the NW axis is
affected by a different current-induced effective field, given
by u(β − α)/(γ δ). This asymmetry in the current effects on
the translation and rotation motions of the DW does not
allow us to obtain analytical solutions for the DW position
and phase. However, we can develop a numerical analysis of
Eqs. (6). Results for the DW position are depicted in Fig. 6,
considering four different values of μ and two values of the
electric current for each case. It can be noticed that depending
on the current strength, the DW changes its stationary posi-
tion or is unpinned from the region of maximum curvature,
moving in an oscillatory motion far from this position. Red
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lines represent the DW position under the action of a current
small enough to keep the DW pinned around a region near
to the maximum curvature. In this case, the DW follows a
harmonic damped oscillation around this position, where the
electric current balances the effective field. The analysis of
Fig. 6 also reveals that the NW eccentricity influences the
frequency, amplitude, and the kind of damped harmonic os-
cillation (UD or OD). The greater the eccentricity, the greater
the oscillation frequency. If the DW is under the action of an
electric current that overcomes a threshold value (blue-dashed
lines), the DW escapes from the “potential well” generated
by the exchange-driven curvature-induced effective field. We
can observe that before being unpinned from the stationary
position, the DW oscillates around it with a frequency that
decreases as a function of μ. Finally, we observe that the am-
plitude of the oscillations increases with the electric current.
Because we have no analytical solutions for describing the
DW position as a function of the electric current, the critical
values presented in Fig 6 were numerically obtained in a trial
and error procedure.

We call attention to the fact that high temperature effects
could change the phenomenology described here. Indeed, the
effect of temperature plays a role in the current-driven DW
motion in such a way that Joule heating influence the DW
behavior because it changes the magnetic parameters of the
NW and decrease the critical fields. For instance, the emer-
gence of spin waves or multiple DWs induced by temperature
can assist or act against the pure spin-transfer torque [36,37].
In the same hand, when the DW is under the action of a
threshold current dividing linear and oscillatory dynamical
regimes, the thermal field appearing due to Joule heating
can suppress the Walker breakdown and accelerates the DW
propagation [38,39]. Therefore, if temperature effects are con-
sidered in describing the DW dynamics in bent NWs, one
could expect that the threshold current for which the DW is
unpinned should diminish. Additionally, after unpinned, the
oscillatory motion of the DW could be suppressed. How-
ever, most of these effects occur for temperatures higher than
300 K.

V. DW DYNAMICS UNDER THE ACTION OF A
TANGENTIAL MAGNETIC FIELD

Due to the asymmetric role played by the spin transfer
torque term on the translation and rotation motion, our analy-
sis of the DW motion under electric current is strictly numeric.
Therefore, to obtain analytical solutions and better describe
the dynamical properties of a DW displacing in an elliptically-
bent NW under the action of external stimulus, we consider
now that the system is subject to an external magnetic field
H = H η̂, i.e., it is an inhomogeneous field whose field lines
follow the curvature of the wire. Although there are exper-
imental difficulties for implementing such a field, our main
purpose here is to obtain analytical results that allows us to
obtain a description of the DW unpinning phenomenon.

From considering our analogy with a spring-mass system,
a tangential magnetic field H = H η̂ applied on the NW can
be considered as an extra “force” term associated with the ex-
ternal magnetic field in the “Newton’s law” (14) that describes

FIG. 7. Analogy between the DW motion under the action of a
tangential external magnetic field and a mass-spring system under the
action of the gravitational force. Red dots represent the DW center.
The external magnetic field is responsible for bringing the DW to a
new equilibrium point.

the DW motion

m η̈0 = H − κμη0 − bμη̇0. (21)

One can notice that the external field plays a role similar
to the gravitational force acting on a mass-spring system (see
Fig. 7). Therefore, the DW assumes a new equilibrium posi-
tion that depends on the magnetic field strength H and the
curvature-induced effective field Hexη, which compete with
each other. From Eq. (21), we obtain

η0 (t ) = e−tβμ
(
K1e−t

√
β2

μ−ω2
0 + K2et

√
β2

μ−ω2
0
) + ηH (22)

where ηH = HMsrδ sinh3 μ

2A . Assuming that the initial conditions
are η0(0) = 0 and η̇0(0) = 0, the constants K1 and K2 are
evaluated as

K1 = −ηH

2

⎛
⎝1 − βμ√

β2
μ − ω2

0

⎞
⎠, (23a)

K2 = −ηH

2

⎛
⎝1 + βμ√

β2
μ − ω2

0

⎞
⎠. (23b)

As expected, the analysis of Eq. (22) reveals that the DW
presents a damped oscillatory motion around a new equilib-
rium position ηH that depends on the external magnetic field
and the ellipse eccentricity. We can observe that, for a given
H , the equilibrium position is farther from η = 0 for NW with
lower eccentricity. This behavior is intrinsically associated
with the decrease in Hexη when μ increases. In this context,
we can again classify the DW motion under the action of an
external magnetic field as UD or OD, for βμ < ω0 or βμ > ω0,
respectively. Previous statements can be corroborated from
the analysis of Fig. 8, which illustrates the DW position as
a function of time obtained from both Eq. (22) (red lines)
and numerical solutions of Eqs. (6) (blue-dashed lines). Good
agreement between both methods is observed. Again, DWs
moving in elliptical NWs with μ = 0.5, μ = 1, and μ = 2
present a UD regime, while OD behavior is obtained for
μ = 4.
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FIG. 8. UD regime to the DW oscillations for μ = 0.5 (a), μ = 1
(b), and μ = 2 (c). The OD regime is depicted in (d) for μ = 4. Here,
red lines are the solution described by the harmonic approximation,
while the blue-dashed lines are the solutions described by the numer-
ical evaluation of the LLG equation.

As stated before, Hex η increases with η0 in the interval
[−ηe, ηe], but decreases when η0 is beyond this region (see
Fig. 3). Therefore, there is a threshold for the external mag-
netic field from which the elastic regime is not more valid and
the DW is unpinned from the position with maximum curva-
ture. The limit field ensuring that the DW does not exceed the
elastic regime can be estimated as He ≈ −Hex η(ηe/2) in such
a way that the DW equilibrium position is η0 = ηe/2. In this
case, in the first oscillation, the DW displaces �η0 ≈ ηe/2
beyond the equilibrium position and then the DW does not
overcome the elastic limit. After some algebra, He can be
evaluated as

He ≈ 4A
√

2 + 2cosh(2μ) − λ

Msrδ(2cosh(2μ) − √
2 − 2cosh(2μ) + λ)

3/2 , (24)

where λ = √
14 + 2cosh(4μ). Equation (24) allows us to es-

timate He as a function of the NW eccentricity. For instance,
He ≈ 68.15 and 16.87 Oe for μ = 0.5 and 1, respectively. To
analyze the DW behavior for different external magnetic fields
and NW eccentricities, we determine the DW position and
phase for elliptically bent NWs with eccentricities μ = 0.5
and μ = 1. The obtained results are depicted in Fig. 9, where
red lines represent the DW position and phase when it is under
the action of the H = He. In this case, the DW reaches a new
equilibrium position depending on the NW eccentricity, given
by ηe/2 ≈ 0.05π and 0.1π rad for μ = 0.5 and 1, respec-
tively. We also highlight that the DW does not overcome the
position ηe, delimiting the elastic regime (see black-dashed
lines in Fig. 9). The green-dotted lines in Fig. 9 show the DW
position when it is under the action of a magnetic field whose
strength is slightly higher than He. In this case, during its os-
cillations, the DW reaches a position along the NW that is out
of the range in which the elastic regime occurs. Nevertheless,
it is noteworthy that even if the DW exceeds position ηe during

FIG. 9. (a) The DW angular position along the time for a NW
with μ = 0.5 different intensities of the Zeeman field. (b) The cos φ

as a function of time under the same fields as case (a). (c) DW
angular position along the time for a NW with μ = 1 under different
intensities of the Zeeman field. (d) The cos φ as a function of time
under the same fields as case (c).

the first oscillation, the curvature-induced tangential effective
field is still big enough to ensure that |Hex η| > |H |, which
brings the DW back to a position where η0 < ηe. Finally, if
the magnetic field overcomes a threshold, the DW is unpinned
and starts propagating along the NW in an oscillatory motion
followed by a DW rotation. This behavior is depicted by blue
lines in Fig. 9, where the critical magnetic field is numerically
evaluated.

We highlight that the analysis of the DW phase yields a
completely analogous behavior to that obtained for the DW
position [see Figs. 9(b) and 9(d)]. In this case, while the DW
translation motion behaves like a mass-spring system in the
elastic regime, we observe that in its rotational dynamics, the
DW behaves as a torsion pendulum. Furthermore, the natural
frequency ω0 and the damping parameter βμ are the same as
obtained for the DW translational motion.

VI. CONCLUSIONS

In this paper, we developed an analysis of a transverse
domain wall dynamics displacing along an elliptically bent
NW with circular cross section. The curvature gradient of the
elliptical geometry strongly affects the DW translation and
rotation motions. Particularly, the exchange-driven curvature-
induced tangential effective field produces a pinning potential,
which increases with the ellipse eccentricity and traps the
DW near the region presenting maximum curvature. The DW
equilibrium position is a result of the competition between
the tangential effective field and the torque on the magnetiza-
tion originated from an external stimulus (electric current or
magnetic field). Our results evidence that if the external stim-
uli are below a threshold value, the DW moves following a
damped harmonic oscillation around an equilibrium position.
Nevertheless, if the external stimulus overcomes the threshold
imposed by the exchange-driven curvature-induced tangential
effective field, the DW is unpinned from the region with max-
imum curvature and moves along the NW with an oscillatory
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motion characteristic of the Walker regime. Therefore, the
results here presented support the possibility of controlling the
DW dynamics by varying both the NW curvature and external
stimulus.
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APPENDIX: EXPRESSIONS FOR THE EXCHANGE
ENERGY DENSITY AND EXCHANGE FIELD IN AN

ARBITRARY CURVILINEAR NW

The exchange energy can be calculated as Eex =∫
NW Eexhηdη, where Eex = −(1/2)M · Hex is the exchange

energy density and Hex = (2A/Ms)∇2m is the exchange ef-
fective field evaluated in an arbitrary point on the NW length.
Under this framework, we assume that the magnetization
varies only along to the tangential direction, that is, m =
m(η), and then the DW is described by � = �(η). Further-
more, we recall that the considered NW lies in the xy plane,
which implies hz = 1. Thus, we can determine an expression
for the exchange density energy in a transverse DW lying in a
general curvilinear system (μ, η, z) as follows:

Eex = A

{(
1

hη

∂�

∂η

)2

− 2

hμh2
η

∂hη

∂μ

∂�

∂η
sin φ

+ 3 − cos(2φ) + 2 cos(2�) cos2 φ

4h2
μh2

η

×
[(

∂hμ

∂η

)2

+
(

∂hη

∂μ

)2

− hη

∂2hη

∂μ2

]

+ 3 + cos(2�) − 2 sin2 � cos(2φ)

4hμh3
η

×
(

∂hμ

∂η

∂hη

∂η
− hη

∂2hμ

∂η2

)

+ 1

h3
μhη

∂hμ

∂μ

∂hη

∂μ
(cos2 � + sin2 � sin2 φ)

}
. (A1)

It is also useful to determine an expression for the exchange
effective field acting on the center of a DW lying in a bent NW.
For this purpose, we need to calculate the Laplacian operator
of m and evaluate it for � = π/2. Specifically, for a head-to-
head DW, we have

Hex μ ≡ (Hex · μ̂)�= π
2

= −2A

Ms

{[
1

δ2
+

(
1

hμhη

∂hμ

∂η

)2

+
(

1

hμhη

∂hη

∂μ

)2

+ 1

hμh3
η

∂hμ

∂η

∂hη

∂η
+ 1

h3
μhη

∂hμ

∂μ

∂hη

∂μ

− 1

hμh2
η

∂2hμ

∂η2
− 1

h2
μhη

∂2hη

∂μ2

]
sin φ − 2

δhμhη

∂hη

∂μ

}
,

(A2)

Hex η ≡ (Hex · η̂)�= π
2

= −2A

Ms

{[
1

hμh3
η

∂hη

∂η

∂hη

∂μ
− 1

h3
μhη

∂hμ

∂η

∂hμ

∂μ

+ 1

h2
μhη

∂

∂μ

(
∂hμ

∂η

)

− 1

hμh2
η

∂

∂μ

(
∂hη

∂η

)]
sin φ + 1

δhμhη

∂hμ

∂η

}
, (A3)

and

Hex z ≡ (Hex · ẑ)�= π
2

= − 2A

Msδ2
cos φ. (A4)

It is worth noticing that if the metric factors hη and hμ are
η independent, ∂hη/∂η = ∂hμ/∂η = 0, and then Hex η = 0.
Therefore, we can state that the tangential exchange field is
directly associated with the metric variations along the length
of the NW. In other words, Hex η is induced by the curvature
gradient along the η direction. Furthermore, we note that
h ≡ hη = hμ (which occurs in the case of the elliptically bent
NW, as well as in the case of the parabolic and hyperbolic
geometries), the tangential component of the exchange-driven
curvature-induced effective field becomes independent of the
DW phase φ, that is,

Hex η = − 2A

Msδh2

∂h

∂η
. (A5)

We highlight that our results also apply to a tail-to-tail DW
by performing the change δ → −δ.
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