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Impaired gas exchange close to labor causes perinatal asphyxia (PA), a

neurodevelopmental impairment factor. Palmitoylethanolamide (PEA) proved

neuroprotective in experimental brain injury and neurodegeneration models.

This study aimed to evaluate PEA effects on the immature-brain, i.e., early

neuroprotection by PEA in an experimental PA paradigm. Newborn rats were

placed in a 37◦C water bath for 19 min to induce PA. PEA 10 mg/kg, s.c.,

was administered within the first hour of life. Neurobehavioral responses were

assessed from postnatal day 1 (P1) to postnatal day 21 (P21), recording the day

of appearance of several reflexes and neurological signs. Hippocampal CA1

area ultrastructure was examined using electron microscopy. Microtubule-

associated protein 2 (MAP-2), phosphorylated high and medium molecular

weight neurofilaments (pNF H/M), and glial fibrillary acidic protein (GFAP)

were assessed using immunohistochemistry and Western blot at P21. Over

the first 3 weeks of life, PA rats showed late gait, negative geotaxis and

eye-opening onset, and delayed appearance of air-righting, auditory startle,

sensory eyelid, forelimb placing, and grasp reflexes. On P21, the hippocampal

CA1 area showed signs of neuronal degeneration and MAP-2 deficit. PEA

treatment reduced PA-induced hippocampal damage and normalized the

time of appearance of gait, air-righting, placing, and grasp reflexes. The

outcome of this study might prove useful in designing intervention strategies

to reduce early neurodevelopmental delay following PA.
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Introduction

Transient interruption of oxygen supply close to delivery
causes an obstetrical complication known as perinatal asphyxia
(PA) (Adcock and Papile, 2008). The estimated incidence of
this life-threatening complication ranges from 1 to 8 up to 26
per 1,000 live births in developed and developing countries,
respectively (Douglas-Escobar and Weiss, 2015). Neonatal care
advances are so far unsuccessful in overcoming the impact of
PA, which increases neonatal mortality, neurological morbidity,
and neurodevelopmental disorders (NDDs) (Weitzdoerfer et al.,
2004; Herrera-Marschitz et al., 2014). The extensively used
Bjelke’s experimental model (Bjelke et al., 1991) has allowed to
study PA neuropathological and behavioral effects (Barkhuizen
et al., 2017). We have reported long-term PA-induced deficits
(Capani et al., 2009; Galeano et al., 2011; Saraceno et al.,
2010, 2012; Muñiz et al., 2014). We observed behavioral
alterations 1 month after experimental PA (Saraceno et al.,
2016; Herrera et al., 2018), though little is known about the
early impact of the perinatal insult (Horvath et al., 2015;
Barkhuizen et al., 2017). Hence, we examined body weight
gain and several signs of neurological maturation in asphyctic
rats throughout the first 3 weeks of life, corresponding to
the first 3 years of human development (Clancy et al., 2007;
Semple et al., 2013), a critical period for neurotypical and
aberrant neurodevelopment (Meredith, 2015). Developmental
reflex testing concerns human infants, while their evaluation
in rats provides a translational expression of perinatal injuries,
offering genuine developmental traits (Moser, 2001; Nguyen
et al., 2017).

In clinical settings, therapeutic hypothermia (TH) offers
partial neuroprotection (Blanco et al., 2011). Contrary to
expectations, neuroprotective agents have not shown synergism
combined with TH (Cilio and Ferriero, 2010, Azzopardi
et al., 2016; Rüegger et al., 2018) and are expensive for
developing countries with increasing PA incidence. Studying the
effect of endogenous compounds becomes imperative (Tagin
et al., 2015). Palmitoylethanolamide (PEA), the ethanolamide
of palmitic (hexadecanoic) acid (Guida et al., 2017), is a
pro-homeostatic compound (Petrosino et al., 2010; Petrosino
and Di Marzo, 2017), abundant in the human and rodent
brains (Di Marzo, 1998; Maccarrone and Finazzi-Agró, 2002,
Maccarrone and Finazzi-Agró, 2003). We have reported
that PEA treatment (10 mg/kg, within the first hour of

Abbreviations: PA, perinatal asphyxia; PEA, palmitoylethanolamide; P,
postnatal day; MAP-2, microtubule-associated protein 2; pNF H/M,
phosphorylated high and medium molecular weight neurofilament;
GFAP, glial fibrillary acidic protein; NDDs, neurodevelopmental disorders;
TH, therapeutic hypothermia; NAEs, N-acylethanolamides; AEA,
anandamide; OEA, oleoylethanolamide; HI, hypoxia-ischemia; ATP,
adenosine triphosphate; cAMP, 3′: 5′-cyclic monophosphate; PKA,
protein kinase A; PKC: protein kinase C; PD, Parkinson’s disease; PPAR-α,
peroxisome proliferator-activated receptor-alpha; ER, endoplasmic
reticulum.

life) attenuated cytoskeletal alterations in CA1 hippocampal
neurons and improved behavioral outcomes 1 month after PA
(Herrera et al., 2018). The present study intended to expand
these results, describing PEA effects on neurodevelopment
during the first weeks of life and the corresponding changes
in the CA1 hippocampal area at P21. The CA1 area
is particularly vulnerable to experimental PA (Petito and
Pulsinelli, 1984; Pulsinelli, 1985; van de Berg et al., 2000;
Li et al., 2019), and the hippocampus is damaged in
children with NDDs and learning disabilities (Li et al.,
2019). Knowledge of the early effects of PEA treatment is
expected to help design early intervention strategies for the
developing injured brain.

Materials and methods

The experimental protocol was approved by the
Institutional Animal Care and Use Committee of the University
of Buenos Aires (CICUAL#4091/04). The experiments were
conducted following the principles of the Guide for the Care
and Use of Laboratory Animals (Animal Welfare Assurance,
A-3033-01/protocol#S01084).

Only original figures are included in this manuscript. Some
of them are cropped for space limitations and shown in full as
Supplementary material.

Animals

Twenty pregnant Sprague-Dawley rats from the central
vivarium of the School of Veterinary Sciences of the University
of Buenos Aires arrived at our local vivarium for environmental
adaptation 1 week before delivery.

Housing conditions

Animals were housed in individual cages at constant
21 ± 2◦C temperature and 65 ± 5% humidity conditions with
free access to food and tap water. Lights went on at 7 a.m., with
12:12 h light: dark cycles (Galeano et al., 2011).

Induction of perinatal asphyxia

Rat pups were subjected to PA using Bjelke et al.’s
original model modified in our laboratory (Bjelke et al., 1991;
Capani et al., 2009). This experimental paradigm induces
severe asphyxia by submerging rat pups immediately upon
delivery in a water bath at 37◦C. After 19 min, intermittent
tactile stimulation is given until regular breathing restoration
(Saraceno et al., 2010).
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Neuroprotection protocol

Within the first hour of life, 75 male rat pups were injected
with either vehicle (VHI, 1:1:8 solution of DMSO, Tween 80
and NaCl) or PEA 10 mg/kg (Herrera et al., 2018). Only
male pups were used to avoid confounding variables due to
estrogens neuroprotective properties (Saraceno et al., 2010).
Four experimental groups were studied: rats subjected to PA
injected with VHI (PA-VHI, n = 19), rats born vaginally (control,
CTL) injected with VHI (CTL-VHI, n = 21), rats subjected to
PA injected with PEA (PA-PEA group, n = 17), and rats born
vaginally injected with PEA (CTL-PEA group, n = 18). As this
model includes euthanasia administration to the mothers, rat
pups in all the experimental groups were placed by surrogate
mothers, which had delivered vaginally in the previous 24 h.
Rats were identified according to the group and placed in the
respective litters (Udovin et al., 2020).

Neurobehavioral development
examination

Neurodevelopment was assessed from P1 to P21, e.g., during
the first 3 weeks of life, between 12:00 and 15:00 p.m. Pups
(N = 75) underwent daily weight control and testing of reflexes
and signs, symptomatic of nervous system maturation (Kiss
et al., 2009). The experimenter was blind to the groups, i.e.,
unaware of rat treatment.

• Surface righting reflex: pups were placed in the supine
position. Time (seconds) to turn over to the prone position
placing all four paws on the surface was recorded daily.
• Air-righting reflex: pups were dropped head down onto

a bed of shavings from a height of 50 cm. The first
day of landing on four paws was recorded (postnatal
day of appearance).
• Gait: pups were placed at the center of a 13 cm diameter

white paper circle. The test ended if the rat did not leave the
circle after the first 30 s. Postnatal day of gait appearance,
e.g., the first day the rat moved off the circle with both
forelimbs was recorded. Thereafter, test performance was
recorded, in seconds, daily.
• Forelimb placing reflex: the back of the forepaw of a

suspended pup was touched with the bench edge. The first
day of placing the paws on the table was recorded.
• Forelimb grasp reflex: forelimbs were touched with a thin

rod. The first day of grasping onto the rod was recorded.
• Negative geotaxis: pups were placed head down, hindlimbs

in the middle of a 45◦ inclined 30 cm long grid. The test was
ended if the rat did not turn round, climbed up the board
with their forelimbs, and reached the upper rim within the
first 30 s. The first day the rat so did was recorded as the

postnatal day of appearance. Thereafter, negative geotaxis
performance was recorded, in seconds, daily.
• Eye opening: the first day of both eyes’

opening was recorded.
• Auditory startle reflex: the first day of the startle response

to a clapping sound was recorded.
• Sensory eyelid reflex: the eyelid was gently touched with

a cotton swab. The first day of eyelid contraction was
recorded.

Rats are born altricial, so unable to perform complex
behaviors. Reflex screening-level assessment appears the only
testing available at very young ages (Moser, 2011; Nguyen et al.,
2017).

Immunohistochemistry

Three coronal hippocampal sections were cut −480 mm to
−530 mm from Bregma along the rostrocaudal axis (Paxinos
and Watson, 2007) of each of four rats per group (Saraceno
et al., 2016; Herrera et al., 2018). On P21, rats were anesthetized
(ketamine 40 mg/kg+ xylazine 5 mg/kg, i.p.), and intracardially
perfused with 4% paraformaldehyde in 0.1 M phosphate
buffer, pH = 7.4. Brains were dissected out and immersed
in the same fixative solution at room temperature for 2 h,
and in 0.1 M phosphate buffer, pH = 7.4 at 4◦C overnight.
Coronal hippocampal sections (50 µm thick) were obtained
(Vibratome VT 1000 S, Leica Microsystems, Wetzlar, Germany).
Immunohistochemistry was performed on free-floating sections
under moderate shaking. Endogenous peroxidase activity was
quenched using a 0.3% hydrogen peroxide solution in methanol.
Non-specific labeling was blocked with 0.3% normal goat serum
diluted in phosphate-buffered saline (PBS) at room temperature
(RT) for 1 h. Samples were PBS-washed 5 times for 10 min and
incubated with anti-microtubule-associated protein 2 (MAP-
2; 1:250, polyclonal rabbit-IgG; Abcam), anti-phosphorylated
high and medium molecular weight neurofilaments (pNF H/M;
1:500, monoclonal mouse-IgG; Millipore), or anti-glial fibrillary
acidic protein (GFAP; monoclonal rabbit IgG, 1:200, Cell
Marque, a Sigma-Aldrich Company) diluted in 0.3% normal
goat serum in PBS for 48 h at 4◦C. The following day, samples
were PBS-washed 5 times for 10 min and incubated with
horseradish peroxidase (HRP) biotinylated secondary antibody
(Biotinylated anti-mouse-IgG, 1:500, Vector; Biotinylated anti-
rabbit-IgG, 1:500, Vector) diluted in PBS at room temperature
for 2 h. Then, samples were PBS-washed 5 times for 10 min
and incubated with an avidin-biotinylated HRP complex (1:500,
Dako) in PBS in darkness at RT for 1 h, followed by 5 washes
with PBS 10 min. Finally, the sections were incubated at RT
for 5 min in 0.05% diaminobenzidine (DAB, Sigma) diluted in
Tris–HCl 0.05 M pH = 7.4, containing 0.03% H2O2 for signal
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detection. After several running water-washes, the sections were
transferred to a dish with 1× PBS for mounting. Glass slides
were dipped into 1× PBS and a fine paintbrush was used to
coax the sections gently towards the slide. After 1-h drying
at RT, a drop of mounting medium (1:1 PBS: glycerol) was
added barely to cover the tissue-section, and the coverslip
was gradually placed starting with one edge against the slide
and slowly releasing the coverslip nicely to avoid air bubbles.
Finally, a thin nail polish layer was placed to seal the coverslip
perimeter of and left to dry at RT (Bachman, 2013; Potts et al.,
2020). Samples were observed using a digital camera-coupled
Leica microscope, under constant light and brightness/contrast
conditions. The images were processed and analyzed using
ImageJ software (Image J 1.41o, NIH, United States). Antibody
dilutions and DAB chromogen development time were unique
for each protein staining. The intensity was determined in a
blind fashion, using a semi-quantitative 0 to+++score.

Morphometric analysis

The percentage of immunopositive area for pNF H/M
and MAP-2 was estimated by sampling 150 µm2 per
photomicrograph (ImageJ 1.41o, NIH, United States). The
number of GFAP immunoreactive astrocytes was estimated in
the CA1 hippocampal stratum radiatum area using the optical
dissector method (Howard and Reed, 1998) with total section
thickness for dissector height (Hatton and von Bartheld, 1999)
and a 55× 55 µm counting frame. A total of 78 counting frames
per animal was assessed. Section thickness was measured using
a microscope stage-attached digital length measuring device
(Heidenhain-Metro MT 12/ND221; Traunreut, Germany).
Every cell nucleus of GFAP-immunoreactive cells observed
by focusing down through the height of the dissector was
counted. Counts were performed on coded sections. Stratum
radiatum volume in CA1 was estimated using the point count
method (Weibel, 1979). Determinations were made by triplicate
(Herrera et al., 2018).

Western blot

The animals were euthanized by decapitation at 21 days
of age and whole brains were extracted from the skull (Chiu
et al., 2007). Hippocampi were macroscopically dissected out
and stored frozen at −80◦C. For protein extraction, specimens
were thawed, homogenized in ice-cold lysis buffer (10 mM
Tris/HCl, pH = 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Triton
X-100, protease inhibitors), and centrifuged at 14,000 rpm
at 4◦C for 15 min. Supernatants were sampled and protein
content was quantified by Bradford dosage in a 96-well
plate assay using bovine serum albumin (BSA) as standard.

Each lane was loaded with samples containing 90 µg total
protein diluted in buffer (0.3 M Tris/HCl, pH 7, 50% glycerol,
5% SDS, 1 mM EDTA, 0.1% bromophenol blue). Mini-cell
protean II (Bio-Rad, Richmond, CA, United States) was used
for sodium dodecyl-sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). Samples were resolved in 12.5% polyacrylamide
discontinuous gels under denaturing conditions (SDS-PAGE) in
Tris-Glycine buffer containing 25 mM Tris, 192 mM glycine
(Bio-Rad), and 0.1% SDS at constant 120 V for 90 min.
After rinsing in buffer baths at room temperature, proteins
were electrophoretically transferred to PDVF membranes
(MACHEREY-NAGEL, Germany) using the Hoefer TE 70
semi-dry transfer unit (Amersham Biosciences) in Towbin
buffer (25 mM Tris, 192 mM glycine, 20% v/v methanol,
0.1% SDS, pH = 8.3) at constant 200 mA current intensity
for 2 h. Membranes were blocked with 5% non-fat milk
powder and 1% BSA in Tris-buffered saline containing
0.05% Tween 20 and incubated at 4◦C overnight with anti-
microtubule-associated protein 2 (MAP-2; 1:1,000, polyclonal
rabbit-IgG; Abcam), anti-pNF H/M(1:500, monoclonal mouse-
IgG; Millipore) or anti-GFAP (monoclonal mouse-IgG, 1:1,000;
Santa Cruz Biotechnology). Anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, 1:1,000, rabbit-IgG, Sigma-Aldrich)
was used as the loading control. Blots were rinsed and
incubated with HRP-conjugated secondary antibody (1:3,000,
Bio-Rad, Richmond CA, United States) for 1 h at room
temperature. Immunoreactive bands were detected using
an ECL Western blotting analysis system (clarity western
ECL substrate, Bio-Rad). After scanning films, the optical
density of protein bands was quantified (Gel Pro Analyzer
3.1.00.00, Media Cybernetics). Four replicates were used,
and experiments were run in triplicate (Herrera et al.,
2018). Four brains per group were examined in triplicates
(Herrera et al., 2018).

Statistical analysis

Results were expressed as mean ± SEM. Shapiro–Wilk
and Levene’s tests were used to check for normal distribution
and equality of variances. Results underwent a two-way
analysis of variance (ANOVAs) with birth condition (CTL
or PA) and treatment (VHI or PEA) as main factors. For
repeated measure variables like daily body weight and reflexes
performance, a two-way ANOVA with group (CTL-VHI, PA-
VHI, CTL-PEA, and PA-PEA) and day number as the main
factors was used. Two-tailed Student’s t-test, adjusted by the
Bonferroni correction, was used for post hoc comparisons.
p-Value ≤ 0.05 was considered statistically significant, e.g., the
probability that the null hypothesis was correct and results were
random (type I error, or false positive) was ≤5% (Graphpad
Prism version 7.04).
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Results

Body weight gain in the first 3 weeks of
life

Group (F3,34 = 18.51, p < 0.0001) and postnatal day
(F20,680 = 3,938, p < 0.0001) were main sources of variation
in daily body weight and showed interaction (F60,680 = 6.634,
p < 0.0001). Starting on P5, PA-VHI rats’ daily body weight was
lower than CTL-VHI rats’, but not different from PA + PEA
rats at every time-point studied (Figure 1). All through the first
weeks of life, CTL + PEA and CTL-VHI were indistinguishable
based on body weight (Figure 1).

Neurobehavioral development over
the first 3 weeks of life

The appearance day of the air-righting reflex was affected
by PA and PEA treatment (Figure 2A). Birth condition
(F1,66 = 120.6, p < 0.0001) and treatment (F1,66 = 120.6,
p < 0.0001) were main sources of variation, showing interaction
(F1,66 = 157.5; p < 0.0001). The air-righting reflex appeared
later in PA-VHI than in CTL-VHI rats (p < 0.0001), earlier
in PA + PEA rats than in PA-VHI rats (p < 0.0001), while
CTL+ PEA and CTL-VHI rats showed no differences (p = 0.67)
as post hoc analysis confirmed.

Perinatal asphyxia and PEA treatment affected gait
appearance as well (Figure 2B). Two-way ANOVA reflected

FIGURE 1

Body weight gain. Results are expressed as mean ± SEM.
*p < 0.05, PA-VHI vs. CTL-VHI; **p < 0.01, PA-VHI vs. CTL-VHI;
***p < 0.001, PA-VHI vs. CTL-VHI; ****p < 0.0001, PA-VHI vs.
CTL-VHI; #p < 0.05, PA + PEA vs. CTL-VHI; ##p < 0.01, PA + PEA
vs. CTL-VHI; ###p < 0.001, PA + PEA vs. CTL-VHI;
####p < 0.0001, PA + PEA vs. CTL-VHI. CTL-VHI, control rats
treated with vehicle; PA-VHI, rats subjected to PA and treated
with vehicle; PA + PEA, rats subjected to PA and treated with
PEA; CTL + PEA, control rats treated with PEA. ***p < 0.001
PA-VHI vs. CTL-VHI.

birth condition (F1,71 = 3.97, p = 0.04) and treatment
(F1,71 = 14.56, p = 0.0003) were independent sources of
variation (interaction: F1,71 = 1.97; p = 0.16). Gait appeared
later in PA-VHI than in CTL-VHI rats (p = 0.003) and
earlier in PA + PEA than in PA-VHI rats (p = 0.0009). No
difference was found between CTL + PEA and CTL-VHI rats
(p = 0.55).

Forelimb placing reflex appearance was affected by PA and
PEA treatment (Figure 2C). Two-way ANOVA showed birth
condition (F1,67 = 3.09, p = 0.008) and treatment (F1,67 = 7.12,
p = 0.01) as main sources of variation, showing interaction
(F1,67 = 8.21, p = 0.006). Forelimb placing appeared later in
PA-VHI than in CTL-VHI rats (p = 0.008), and earlier in
PA + PEA than in PA-VHI rats (p = 0.002), while CTL-VHI
and CTL + PEA rats were indistinguishable (p = 0.99), as
post hoc analysis confirmed. Birth condition (F1,67 = 103.2,
p < 0.0001) and treatment (F1,67 = 77.49, p < 0.0001)
also affected forelimb grasp reflex onset, showing interaction
(F1,67 = 77.49, p < 0.0001) (Figure 2D). Forelimb grasp
appeared later in PA-VHI than in CTL-VHI rats (p < 0.0001),
earlier in PA + PEA than in PA-VHI rats (p < 0.0001), and
concurrently in CTL+ PEA and CTL-VHI rats (p > 0.9999).

Regarding gait performance, two-way ANOVA revealed
day number as the only source of variation (F10,280 = 21.38,
p < 0.0001), while group had no effect (F3,28 = 0.1953,
p = 0.8987) and interaction was null (F30,280 = 0.9828,
p = 0.4961) (Figure 3). Likewise, two-way ANOVA showed
day number as the only source of variation in surface righting
performance (F20,480 = 28.16, p < 0.0001), which was unaffected
by group (F3,24 = 0.1906, p = 0.9018) with null interaction
(F60,480 = 0.4387, p > 0.9999) (Figure 4).

The auditory startle reflex appearance was affected by PA
but not by PEA treatment (Figure 5A). Two-factor ANOVA
showed birth condition as a source of variation (F1,45 = 36.56,
p < 0.0001) unlike treatment that was not (F1,45 = 0.86, p = 0.36)
with no interaction (F1,45 = 0.02, p = 0.88). Post hoc analysis
revealed a later onset in PA-VHI rats than in CTL-VHI rats
(p = 0.0004), while PA-PEA and PA-VHI groups (p = 0.75)
and CTL-PEA and CTL-VHI groups were indistinguishable
(p = 0.97). Similarly, for eye opening onset (Figure 5B), two-
way ANOVA showed birth condition as a source of variation
(F1,45 = 66.51, p < 0.0001), unlike treatment (F1,45 = 0.004,
p = 0.95), without interaction (F1,45 = 0.004, p = 0.95). Post hoc
analysis confirmed a delay in PA-VHI compared with CTL-VHI
rats (p < 0.0001) but neither between groups PA-PEA and PA-
VHI (p = 0.99) nor CTL-PEA and CTL-VHI (p > 0.9999). The
appearance of the sensory eyelid reflex (Figure 5C) depended on
birth condition (F1,45 = 23.61, p < 0.0001), but not on treatment
(F1,45 = 2.86, p = 0.09), devoid of interaction (F1,45 = 1.02,
p = 0.32). Post hoc analysis revealed that this reflex appeared later
in PA-VHI than in CTL-VHI rats (p = 0.04) while PA-PEA and
PA-VHI (p = 0.07), and CTL-PEA with CTL-VHI groups were
alike (p = 0.98).
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FIGURE 2

Neurobehavioral development. (A) Air-righting reflex. (B) Gait. (C) Forelimb placing reflex. (D) Forelimb grasp reflex. Results are expressed as
mean ± SEM. *p < 0.05, PA-VHI vs. CTL-VHI; **p < 0.01, PA-VHI vs. CTL-VHI; ***p < 0.001, PA-VHI vs. CTL-VHI; //p < 0.01, PA-VHI vs. PA + PEA;
///p < 0.001, PA-VHI vs. PA + PEA. CTL-VHI, control rats treated with vehicle; PA-VHI, rats subjected to PA and treated with vehicle; PA + PEA,
rats subjected to PA and treated with PEA; CTL + PEA, control rats treated with PEA.

FIGURE 3

Gait performance. Results are expressed as mean ± SEM.
CTL-VHI, control rats treated with vehicle; PA-VHI, rats subjected
to PA and treated with vehicle; PA + PEA, rats subjected to PA
and treated with PEA; CTL + PEA, control rats treated with PEA.

Birth condition affected negative geotaxis onset (Figure 5D)
(F1,71 = 45.44, p < 0.0001), while treatment did not (F1,71 = 3.02,
p = 0.09), showing no interaction (F1,71 = 0.19, p = 0.66).

FIGURE 4

Surface righting performance. Results are expressed as
mean ± SEM. Statistical analyses were conducted by two-way
mixed ANOVA. CTL-VHI, control rats treated with vehicle;
PA-VHI, rats subjected to PA and treated with vehicle; PA + PEA,
rats subjected to PA and PEA treatment; CTL + PEA, control rats
treated with PEA.

Negative geotaxis appeared later in PA-VHI than in CTL-VHI
rats, but concurrently in PA-PEA and PA-VHI (p = 0.81),
and CTL-PEA and CTL-VHI rats (p = 0.39). Regarding
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FIGURE 5

Postnatal day of reflexes appearance and neurological signs. (A) Auditory start reflex. (B) Eye opening. (C) Sensory eyelid reflex. (D) Negative
Geotaxis. Bars and error bars represent mean ± SEM. *p < 0.05, PA-VHI vs. CTL-VHI; ***p < 0.001, PA-VHI vs. CTL-VHI; #p < 0.05, PA + PEA vs.
CTL-VHI; ##p < 0.01, PA + PEA vs. CTL-VHI; ###p < 0.001, PA + PEA vs. CTL-VHI. CTL-VHI, control rats treated with vehicle; PA-VHI, rats
subjected to PA and treated with vehicle; PA + PEA, rats subjected to PA and treated with PEA; CTL + PEA, control rats treated with PEA.

negative geotaxis performance (Figure 6), two-way ANOVA
showed group condition (F3,44 = 88.9, p < 0.0001) and
postnatal day (F10,440 = 60.39, p < 0.0001) as sources of
variation, showing interaction (F30,440 = 12.5, p < 0.0001).
On P11, PA-VHI rats required more time than CTL-VHI
rats did to complete the task (p < 0.0001), while PA-PEA
rats were faster than PA-VHI rats (p < 0.0001). Groups
CTL-PEA and CTL-VHI were indistinguishable (p = 0.23).
Likewise, on P12, performance was slower in PA-VHI than
in CTL-VHI rats (p < 0.0001). In addition, PA-PEA rats
were faster than PA-VHI rats (p < 0.0001), and CTL-PEA
and CTL-VHI rats were not different (p = 0.9437). On
days P13 and P14, PA-induced negative geotaxis performance
slowdown was still observed (p = 0.0003 and p < 0.0001,
respectively). PA + PEA and PA-VHI (p = 0.9975 and
p = 0.9751) and CTL-PEA and CTL-VHI groups were
comparable (p = 0.3576 and p = 0.0958). Negative geotaxis
performance was comparable in PA-VHI and CTL-VHI groups
on P15 (p = 0.8994), P16 (p = 0.2116), P17 (p = 0.7314), P18
(p > 0.9999), P19 (p = 0.9988), P20 (p = 0.9175), and P21
(p > 0.9999).

Cellular and biochemical modifications
on postnatal day 21

Immunostaining for the specific dendrite marker MAP-
2 allowed dendrite morphology examination (Figure 7A).
Substantial fragmentation was observed in MAP-2
immunoreactive apical dendrites in the CA1 hippocampal
area in the PA-VHI group compared with the CTL-VHI
group that was partly attenuated in the PA-PEA group. Two-
way ANOVA for MAP-2 reactive area results showed birth
condition and treatment as main sources of data variation
(F1,56 = 14,469, p < 0.0001; F1,56 = 658, p < 0.0001), having
interaction (F1,56 = 677.5, p < 0.0001). Post hoc analysis
confirmed a decrease in MAP-2 reactive area in PA-VHI
compared with CTL-VHI rats (p = 0.0009) and, conversely, an
increase in PA-PEA compared with PA-VHI rats (p = 0.0009)
(Figure 7B). Western blot data analysis agreed with these
results, confirming birth condition and treatment as major
sources of MAP-2 protein expression variability (F1,8 = 2,235,
p < 0.0001; F1,8 = 58, p < 0.0001), with interaction (F1,8 = 50,
p < 0.0001). Post hoc analysis confirmed that MAP-2 protein
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FIGURE 6

Negative geotaxis performance. Results are expressed as
mean ± SEM. ***p < 0.001, PA-VHI vs. CTL-VHI; ****p < 0.0001,
PA-VHI vs. CTL-VHI; ////p < 0.0001, PA-VHI vs. PA + PEA;
##p < 0.01, PA + PEA vs. CTL-VHI; ####p < 0.0001, PA + PEA vs.
CTL-VHI. CTL-VHI, control rats treated with vehicle; PA-VHI, rats
subjected to PA and treated with vehicle; PA + PEA, rats
subjected to PA and treated with PEA; CTL + PEA, control rats
treated with PEA.

expression was smaller in PA-VHI than in CTL-VHI rats
(p = 0.0009), larger in PA-PEA than in PA-VHI rats (p = 0.0009),
and not different in CTL-PEA and CTL-VHI rats (p = 0.99)
(Figures 7B,C). Full scans of uncropped blots are presented in
Supplementary Figure 1.

Immunohistochemistry and Western blot analysis of pNF
H/M reactive area and expression levels allowed axonal function
evaluation. Neurofilaments’ aberrant phosphorylation is a
hallmark of axonal degeneration (Grant and Pant, 2000; Sihag
et al., 2007; Dale and Garcia, 2012; Chen et al., 2017) and is
found in several human neurological diseases (Hirano, 1994;
Mori et al., 1996; Bomont et al., 2000; Shepherd et al., 2002;
Douglas-Escobar et al., 2010). Changes in immunoreactivity
and phosphorylation status measured by Western blotting for
pNF H/M give the pattern of PA-induced alterations in axonal
functionality and are in agreement with our previous findings
(Saraceno et al., 2010; Herrera et al., 2018). Figure 8A is
a representative CA1 hippocampal stratum radiatum section
immunostained for pNF H/M. Neither birth condition nor
treatment were sources of variation according to two-way
ANOVA (F1,56 = 0.19, p = 0.66; F1,56 = 0.06, p = 0.8,
respectively; Figure 8B). In agreement with these findings,
analysis of pNF H/M protein expression confirmed that birth
condition and treatment were not sources of data variation
(F1,8 = 0.0006, p = 0.98; F1,8 = 0.001, p = 0.97, respectively;
Figure 8C). Full scans of uncropped blots are presented in
Supplementary Figure 2.

Similar results were observed for glial response according
to GFAP immunostaining data analysis (Figure 9A). The
hippocampus and dentate gyrus, phylogenetically, of the oldest
cortical areas, keep much of the radial orientation of their
immature astroglial system (Eckenhoff and Rakic, 1984). In this

region, a fusiform or rod-shaped and elongated morphology is
observed (Zhou et al., 2019). All experimental groups showed
a strikingly regular intense pattern of GFAP immunoreactivity
in the hippocampus (Garcia-Segura et al., 1988; Hajós and
Kálmán, 1989). Two-way ANOVA showed that the number
of GFAP positive astrocytes was unrelated to either birth
condition or treatment (F1,56 = 0.22, p = 0.64; F1,56 = 0.001,
p = 0.97; Figure 9B). In agreement with these findings, GFAP
protein expression was not affected by either birth condition
or treatment (F1,8 = 0.007, p = 0.94; F1,8 = 0.01, p = 0.91;
Figure 9C). Full scans of uncropped blots are presented in
Supplementary Figure 3.

Discussion

Perinatal asphyxia-induced growth
retardation and neurodevelopmental
delay

In our study, PA for 19 min caused growth retardation,
evidenced by low weight gain and severe neurodevelopmental
delay by the first 3 weeks of life. The forelimb placing and grasp
reflexes, resembling human palmar placing and grasp reflexes
(Futagi et al., 2012; Nguyen et al., 2017), were delayed 3–5 days.
Asphyctic animals had a 1.5-day delay in eye-opening, a 2-
day delay in air-righting and auditory startle reflexes, and a
1-day delay in gait, negative geotaxis, and sensory eyelid reflex.
Asphyctic rats showed slow negative geotaxis on P11 and P14
that normalized by the third week of life. These results extend
earlier evidence after PA for 15 min, where forelimb placing
and grasp reflexes were also affected the most. However, rats
subjected to PA for 15 min (moderate PA) had body weight gain
restored by the second week of life and normal eye opening (Kiss
et al., 2009). Our findings show severe neurodevelopmental lag
after 19 min of PA. Perinatal hypoxia-ischemia (HI) in Rice-
Vanucci’s experimental model induced growth retardation (Fan
et al., 2005, 2006; Lubics et al., 2005), delayed eye-opening (Fan
et al., 2005, 2006; Romero et al., 2017) and grasping onset
(Lubics et al., 2005), and slowed gait (Fan et al., 2005, 2006;
Lubics et al., 2005), surface righting (Fan et al., 2005, 2006;
Lubics et al., 2005), and negative geotaxis (Lubics et al., 2005),
early signs of neurobehavioral dysfunction.

The neurodevelopmental delay observed over the first
3 weeks of life after PA precedes the alterations in exploratory
activity, anxiety levels, and cognition on P30 (Barkhuizen et al.,
2017). One month after PA, we found a decrease in rearing time
(Herrera et al., 2018), i.e., vertical exploration in response to
novelty, typically dependent on the integrity of the hippocampus
(Lever et al., 2006). One-month-old rats subjected to an episode
of 19–20 min of PA had reduced locomotion and rearing as
well (Chen et al., 1995). Deficits in exploratory locomotion and
increased anxiety in the open-field test were reported 1 month
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FIGURE 7

Microtubule-associated protein (MAP-2) immunostaining and protein expression in the rat hippocampus on P21. (A) Representative images of
the stratum radiatum of CA1 hippocampal area immunostained for MAP-2. Scale bar: 50 µm. Marked rectangular areas in the main-image are
shown magnified in the corresponding lower right margin. The white arrow indicates positive immunostaining for MAP-2. Scale bar: 25 µm.
(B) Percentage of reactive area of MAP-2 positive dendrites. (C) Optical density of bands showing MAP-2 protein expression in Western blot.
Results are shown as mean ± SEM. ****p < 0.0001, PA-VHI vs. CTL-VHI; ////p < 0.0001, PA-VHI vs. PA + PEA; ####p < 0.0001, PA + PEA vs.
CTL-VHI. CTL-VHI, control rats treated with vehicle; PA-VHI, rats subjected to PA and treated with vehicle; PA + PEA, rats subjected to PA and
treated with PEA; CTL + PEA, control rats treated with PEA.

after severe PA (21 min). These 1-month-old asphyctic rats
showed reduced exploratory locomotion on a squared area on
P7 and slowed negative geotaxis on P14, and surface righting on
P1 (Farfán et al., 2020).

Perinatal asphyxia-induced
hippocampal neuronal degeneration
and dendritic alterations on postnatal
day 21

Unlike studies on early growth and reflex development
after PA (Kiss et al., 2009), we included morphological and

biochemical analysis along with neurobehavioral testing.
Instead of focusing on hippocampal oxidative stress or
neuroinflammation (Farfán et al., 2020), we studied cytoskeletal
modifications in CA1 neurons and the corresponding astrocytic
response to extend our findings on P30 (Herrera et al.,
2018). Neurobehavioral testing showed growth retardation
and delayed reflexes over the first 3 weeks of life, and
neuropathology examination on P21 confirmed CA1
hippocampal neurons’ vulnerability to severe PA (19 min).
Besides signs of degeneration, these neurons showed decreased
MAP-2 immunostaining and expression. MAP-2 seems an
early biomarker of PA-induced neuronal injury, as observed
in a birth-asphyxia piglet model (Lingwood et al., 2008), used
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FIGURE 8

Phosphorylated high and medium molecular weight neurofilaments (pNF H/M) immunostaining and protein expression in the rat hippocampus
on P21. (A) Representative images of the stratum radiatum of CA1 hippocampal area immunostained for pNF H/M. Scale bar: 50 µm. Marked
rectangular areas in the main-image are shown magnified in the corresponding lower right margin. The white arrow indicates positive
immunostaining for pNF H/M. Scale bar: 25 µm. (B) Percentage of reactive area of pNF H/M positive axons. (C) Optical density of bands
showing pNF H/M protein expression in Western blot. Results are shown as mean ± SEM. PA-VHI, rats subjected to PA and treated with vehicle;
PA + PEA, rats subjected to PA and treated with PEA; CTL + PEA, control rats treated with PEA.

to assess dendritic cytoskeletal dysfunction induced by HI
(Malinak and Silverstein, 1996; Mink and Johnston, 2000;
Sánchez et al., 2000; Zhu et al., 2003; Takita et al., 2004; Kühn
et al., 2005; Graham et al., 2018). MAP-2 is phosphorylated
by protein kinase A (PKA), an ATP-dependent enzyme. Then,
PA-induced ATP reduction might explain MAP-2 decrease as
phosphorylation might alter its susceptibility to proteolysis
(Islam and Burns, 1981; Johnson et al., 1991; Grau et al., 1992;
Sánchez et al., 2000; Ashworth et al., 2003).

In this work, the decreased hippocampal MAP-2
immunostaining and protein expression extend our findings on

MAP-2 decreased level on P30 (Herrera et al., 2018), observed
in the hippocampus as far as on P120 (Saraceno et al., 2010).
In contrast, on P21 hippocampal pNF H/M level was stable
and was not affected until P30 (Saraceno et al., 2010; Herrera
et al., 2018). On P21, we have not found differences in either
labeling intensity or the number of GFAP-positive astrocytes
in the hippocampus. Once again, our results pose GFAP as
a late biomarker of glial hippocampal damage following PA
(Saraceno et al., 2016; Herrera et al., 2018), showing a significant
increase 4 months following severe PA for 19 min (Saraceno
et al., 2010). Likewise, clinical data suggests plain astrogliosis in
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FIGURE 9

Glial fibrillary acidic protein (GFAP) immunostaining and protein expression in the rat hippocampus on P21. (A) Representative images of the
stratum radiatum of CA1 hippocampal area immunostained for GFAP. Scale bar: 50 µm. Marked rectangular areas in the main-image are shown
magnified in the corresponding lower right margin. The white arrow indicates positive immunostaining area for GFAP. Scale bar: 25 µm.
(B) Percentage of reactive area of GFAP positive astrocytes. (C) Optical density of bands showing GFAP protein expression in Western blot.
Results are shown as mean ± SEM. CTL-VHI, control rats treated with vehicle; PA-VHI, rats subjected to PA and treated with vehicle; PA + PEA,
rats subjected to PA and treated with PEA; CTL + PEA, control rats treated with PEA.

a post-tertiary phase of damage (Douglas-Escobar and Weiss,
2015; Looney et al., 2015).

Early neuroprotective effects of
palmitoylethanolamide treatment

Palmitoylethanolamide (10 mg/kg) administered within the
first hour of life, reversed the delay in the appearance of
gait, air-righting, forelimb placing and grasp reflexes, and

improved negative geotaxis performance on P11 and P12 in rats
subjected to severe PA (19 min). PEA treatment reduced CA1
neuronal degeneration and cytoskeletal dendritic alterations
on P21, as inferred from MAP-2 immunostaining and protein
expression. Neuroprotection by PEA treatment against MAP-
2 deficit and early neuromotor dysfunction has been observed
in experimental neurodegeneration. PEA blunted Aβ42-induced
reduction in MAP-2 labeling in degenerating neurons in vitro
(Beggiato et al., 2018) and attenuated MAP-2 deficit in an
in vivo Parkinson’s disease (PD) model (PEA 10 mg/kg)
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(Esposito et al., 2012). Therapeutic effects were reported for PEA
(10 mg/kg) on limb locomotor rating scale over the first 8 days
following experimental spinal cord injury (Genovese et al.,
2008). Likewise, PEA prevented short-term limb weakness and
altered gait in an experimental autoimmune encephalomyelitis
model of multiple sclerosis (Rahimi et al., 2015).

Neuroprotective effects of PEA are mediated by peroxisome
proliferator-activated receptor-alpha (PPAR-α) activation (Lo
Verme et al., 2005) according to experimental evidence
regarding PD, Alzheimer’s disease, traumatic brain injury and
several neuropsychiatric disorders (Skaper et al., 1996; Genovese
et al., 2008; Ahmad et al., 2012; D’Agostino et al., 2012; Esposito
et al., 2012; Di Cesare Mannelli et al., 2013; Coppola and
Mondola, 2013, 2014; Scuderi et al., 2014). The molecular
mechanisms underlying PEA neuroprotective action via PPAR-
α activation are still unknown. In PA, increased intracellular
Ca2+ concentration and sustained endoplasmic reticulum (ER)
stress may lead to calpain activation, with excess substrates’
degradation (Chohan et al., 2006; French et al., 2006). In this
context, neuroprotection by PEA in experimental PA could
result from decreased calpain activity via PPAR-α activation,
reducing MAP-2 degradation, keeping cytoskeleton integrity.
Calpain activity reduction by PPAR-α activation might be
associated with decreased ER stress. However, understanding
the molecular mechanism whereby PPAR-α activation reduces
ER stress and stabilizes MAP-2 requires further research.

Conclusion

Treatment with PEA (10 mg/kg) within the first hour of life
attenuated neurodevelopmental delay in rats subjected to severe
PA (19 min), reducing neurodegeneration and MAP-2 deficit in
CA1 neurons on P21. Involved in the pathogenesis of several
NDDs (Lasser et al., 2018), dendritic protein MAP-2 appears as
an early marker of PA-induced hippocampal damage and a novel
target for PEA-mediated neuroprotection. The therapeutic
properties of this endogenous amide in NDDs have gathered
evidence as case reports (Antonucci et al., 2015), experimental
rodent models (Cristiano et al., 2018), randomized clinical trials
(Khalaj et al., 2018), and comparative studies on animals and
humans (Bertolino et al., 2017). Clinical research showed a high-
safety profile for PEA (Steels et al., 2019). Therefore, PEA seems
to be a promising neuroprotective agent against PA. Further
studies should clarify the molecular mechanisms underlying
PEA effects and help specify its precise indications.
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