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a b s t r a c t

The basic entanglement swapping protocol allows to project two
qubits, which have never interacted, onto a maximally entan-
gled state. For deterministic swapping, the key ingredient is
the maximal entanglement that was initially contained in two
pairs of qubits and the capacity of projecting onto a Bell basis.
Thus the basic and deterministic entanglement swapping scheme
involves three maximal level of entanglement. In this work
we propose probabilistic entanglement swapping processes per-
formed with different amounts of initial entanglement. Besides
that we suggest a non Bell measuring-basis, to introduce a third
entanglement level in the process. Additionally, we propose the
unambiguous state extraction scheme as the local mechanism for
probabilistically achieving the EPR projection. The combination
of these three elements allows us to design four strategies for
performing probabilistic entanglement swapping. Surprisingly,
we find a twofold entanglement threshold effect related to the
concurrence of the measuring-basis. Specifically, the maximal
probability of accomplishing a EPR projection becomes a constant
for concurrences higher than or equal to threshold entangle-
ment value. Thus, we show that maximal entanglement in the
measuring-basis is not required for attaining the EPR projection.
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1. Introduction

Erwin Schrödinger was one of the first to notice the existence of special correlation, entangle-
ent, present in a superposition of tensorial product states of two subsystems [1]. Currently, it

s known that entanglement is purely a quantum ingredient, which introduces non-local effects in
rotocols for processing information on atomic and molecular scales [2–5]. Thus, a wide community
f researchers have focused efforts to find a well defined functional which can assign entanglement
alues for pure and mixed states. The most known of these functional is the entanglement of
ormation, which quantifies the resources needed to create a given entangled state [6]. Specifically,
. K. Wootters found a closed analytical formula for the concurrence of an arbitrary state of two
ubits, which is a monotone function of entanglement of formation [7,8]. In consequence, for
wo qubits, the concurrence can be used as a measurement for entanglement in its own merit,
hich is what we consider here. For a 2 ⊗ 2 pure state, its concurrence can be evaluated at a
lance. If it is represented in the Schmidt decomposition; it is two times the product of its Schmidt
oefficients [7,8]. So, a factorized state lacks concurrence, whereas a maximal entangled state (EPR)
as a concurrence value equal to 1.
In this context, the generation, manipulation, control, and the practical scope of this quantum

orrelation become important. In particular, the capacity to distribute entanglement between dis-
ant systems has potential applications in designing innovative protocols of quantum information,
hether or not they have a classical counterpart [9–22].
Theoretically and experimentally the entanglement swapping, as a mechanism for distributing the

ntanglement correlation, has been extensively studied [10,23–38].
In this article, we analyze four schemes for performing probabilistic entanglement swapping, in

hich the main task is to project two qubits, which never have interacted, onto a Bell state. We
onsider two pairs of qubits in different partially entangled pure states. Besides, we also assume
hat the measuring-basis can consist of non-Bell states. Additionally, we propose the unambiguous
tate extraction (USE) protocol [39–42] as the mechanism for implementing local operations.

The article is organized as follows. In Section 2 we briefly recall the well known, deterministic
nd basic entanglement swapping scheme. In Section 3 we propose four strategies for achieving the
ask of probabilistically projecting onto an EPR state, shared by two qubits which never interacted.
n the last Section 4 we summarize the principal results of this article. Additionally, Appendix shows
hat the unambiguous state extraction (USE) protocol [39–42] can be locally applied to extract an EPR
tate with optimal probability. In particular, we introduce an explicit joint unitary transformation,
hich allows to accomplish the EPR projection, additionally finding the optimal probability of
uccess as a function of the initial concurrence value [43–47]. The results described are directly
pplied onto the first, second and fourth strategy.

. Deterministic and basic entanglement swapping

The basic entanglement swapping scheme consists of four qubits A, C1, B, C2, the pairs AC1 and
C2 were prepared previously in Bell states. The qubits C1 and C2 remain in the same laboratory
Lab-C), whereas the qubits A and B are taken to two different laboratories, away from each other
nd away from Lab-C . Therefore, joint operations are only allowed between qubits C1 and C2. Local
perations can be applied onto each of the four qubits and classical communication can be enabled
mong all of them. The purpose of this scheme is to entangle the pair AB in an EPR state by using
lassical communication with local and joint operations. Fig. 1 illustrates the spatial scheme of the
ifferent locations of four qubits.
The following identity gives account of the basic entanglement swapping procedure,

|ψ+

AC1
⟩|ψ+

BC2
⟩ =

1
2

(
|φ+

C1C2
⟩|φ+

AB⟩+ |ψ+

C1C2
⟩|ψ+

AB⟩

−|ψ−

C1C2
⟩|ψ−

AB⟩ − |φ−

C1C2
⟩|φ−

AB⟩

)
, (1)

where,

|ψ±

ij ⟩ =
(
|0i⟩|1j⟩ ± |1i⟩|0j⟩

)
/
√
2,

±
( ) √
|φij ⟩ = |0i⟩|0j⟩ ± |1i⟩|1j⟩ / 2,

2
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Fig. 1. Spatial distribution of the four qubits A, B, C1 and C2 . Qubits C1 and C2 are in the same laboratory. The laboratories
f the qubits A and B are away from each other and are also away from Lab-C .

are the Bell-basis for a pair of qubits i ⊗ j [2]. The right hand side of Eq. (1) clearly shows the
one-to-one correlation between the Bell states for the pairs C1C2 and AB. From this, one realizes
hat by measuring the Bell states in Lab-C the pair AB can be projected onto a Bell state, thus
eterministically achieving the main task. It is worth noting, that determinism demands the key
ngredient of maximal entanglement in the two initial states and also in the measuring-basis.

. Probabilistic entanglement swapping

We analyze four strategies for probabilistically obtaining an EPR state in the bipartite system AB,
hen the pairs AC1 and BC2 initially are in the following partially entangled pure states,

|ψ̄AC1⟩ = α|0A⟩|1C1⟩ + β|1A⟩|0C1⟩, (2a)

|ψ̄BC2⟩ = γ |0B⟩|1C2⟩ + δ|1B⟩|0C2⟩, (2b)

where, without loss of generality, we assume the amplitudes α, β , γ , δ to be real and non-negative
numbers, such that,

α ≤ β, and γ ≤ δ. (3)

For normalization α2
+ β2

= 1 and γ 2
+ δ2 = 1.

The initial concurrences of the states (2) are CAC1 = 2αβ and CBC2 = 2γ δ, respectively.

3.1. First strategy

The first, simplest strategy is to extract an EPR state from each bipartite state (2) with the
unitary-reduction local operations described in Appendix.

If both processes are successful, the basic swapping scheme can be carried out. From Eqs. (3)
and (A.5) we get the success probability for obtaining an EPR state in the pair AB, which is equal to
the product of the probabilities for extracting an EPR state from each state (2), specifically,

Ps1 = 4α2γ 2,

=

(
1 −

√
1 − C2

)(
1 −

√
1 − C2

)
. (4)
AC1 BC2

3



L.R. Oppliger, T.L. Purz, A. Muñoz et al. Annals of Physics 451 (2023) 169257

r

w

Note, that Ps1 is an increasing function of the initial concurrences, CAC1 and CBC2 , besides, entangle-
ment values different from zero of both initial states are necessary and sufficient for having non
zero success probability.

3.2. Second strategy

The second strategy is suggested by writing the initial tensorial product state |ψ̄AC1⟩|ψ̄BC2⟩ in the
epresentation of Bell-basis of the bipartite system C1C2, i.e.,

|ψ̄AC1⟩|ψ̄BC2⟩ =

√
p
2
|φ+

C1C2⟩|φ̈
+

AB⟩

+

√
1 − p
2

|ψ+

C1C2⟩|ψ̈
+

AB⟩

−

√
1 − p
2

|ψ−

C1C2⟩|ψ̈
−

AB⟩

−

√
p
2
|φ−

C1C2⟩|φ̈
−

AB⟩, (5)

here we have defined the states for the pair AB as follows,

|φ̈±

AB⟩ =
αγ |0⟩|0⟩ ± βδ|1⟩|1⟩

√
p

, (6a)

|ψ̈±

AB⟩ =
αδ|0⟩|1⟩ ± βγ |1⟩|0⟩

√
1 − p

, (6b)

and the probability,

p = α2γ 2
+ β2δ2.

The identity (5) shows a one-to-one correlation between the Bell states for C1C2 and the states
(6) for the pair AB. Thus we realize that, by measuring Bell states in Lab-C , the bipartite system
AB is projected onto one of the partially entangled states (6) with probabilities p/2 and (1 − p)/2,
respectively. Notice, that the minus sign in |φ̈−

AB⟩ and |ψ̈−

AB⟩ can be removed by applying a local Pauli
operator σz on A or B. Therefore, in practice, the system AB has two outcomes |φ̈+

AB⟩ with probability
p and |ψ̈+

AB⟩ with probability 1 − p.
From each of these states, |φ̈+

AB⟩ and |ψ̈+

AB⟩, one of the receivers, A or B, can probabilistically extract
a Bell state by means of the local USE scheme. If the outcome is |φ̈+

AB⟩, the conditional probability
of extracting a Bell state becomes pext,φ = 2α2γ 2/p, otherwise, if the outcome is |ψ̈+

AB⟩, there are
two cases for evaluating the conditional probability:

(i) When αδ ≤ βγ , which is equivalent to α ≤ γ , the conditional probability of successful
extraction is pext,ψ = 2α2δ2/(1 − p).

(ii) When αδ ≥ βγ , which is equivalent to α ≥ γ , the conditional success probability is given
by pext,ψ = 2β2γ 2/(1 − p).

Accordingly, the total success probability of achieving an EPR state in the pair AB becomes,

Ps2 = ppext,φ + (1 − p)pext,ψ ,
= 2min

{
α2, γ 2} ,

= min
{
1 −

√
1 − C2

AC1
, 1 −

√
1 − C2

BC2

}
. (7)

Note, that the expression Ps2 exhibits the entanglement threshold effect, since it is determined by
the smallest entanglement of the initial states |ψ̄ ⟩ and |ψ̄ ⟩. It is worth emphasizing, that both
AC1 BC2

4
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Fig. 2. Success probabilities for generating an EPR state as functions of CBC2 with the first strategy (solid line) and with
he second strategy (dashed line) for different values of CAC1 : 0.4 (black), 0.7(gray), and 0.97 (light-gray).

nitial entanglements are necessary and sufficient for having a success probability different from
ero. Besides, by comparing the success probabilities of both strategies we find that,

Ps2 ≥ Ps1 . (8)

he equality Ps2 = Ps1 holds true, if at least one of the two initial concurrences is equal to 1 or
qual to zero. For instance, by considering CAC1 fixed, Ps2 achieves its maximal value for CBC2 = CAC1 ,
hereas Ps1 reaches the same maximal value at CBC2 = 1. In other words, for a fixed value CAC1 , the
aximal Ps2 demands CBC2 = CAC1 , while the same maximal value for Ps1 demands CBC2 = 1. Fig. 2

llustrates the behavior of the probabilities (4) and (7) for different values of CAC1 .
In consequence, if we consider entanglement as a resource, we can conclude that the second

strategy is more efficient than the first one.

3.3. Strategies without bell-basis measurement

Now, instead of projecting onto Bell states in C1C2, we propose to measure an observable that
has the following eigenstates,

|µ+

C1C2
⟩ = x|00⟩ + y|11⟩, (9a)

|µ−

C1C2
⟩ = y|00⟩ − x|11⟩, (9b)

|ν+

C1C2
⟩ = x|01⟩ + y|10⟩, (9c)

|ν−

C1C2
⟩ = y|01⟩ − x|10⟩, (9d)

where, without loss of generality, we can consider the amplitudes x and y to be real and non-
egative numbers, and,

x ≤ y. (10)

For normalization x2 + y2 = 1. Each state (9) has the same concurrence CC1C2 (x) = 2xy, which is a
unction of the basis parameter x.

From here the natural questions to be addressed are:

• Are there special values for the concurrence CC1C2 (x), with regard to the initial ones CAC1 and
CBC2 , for which the EPR projection can be accomplished with higher probability value?.

• Is a measurement on Bell states required to obtain the same value of probability reached with
the second strategy?
5
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We encountered two special values for the concurrence CC1C2 (x), which are given by,

C±

C1C2
=

CAC1CBC2

1 ±

√
(1 − C2

AC1
)(1 − C2

BC2
)
. (11)

In the search of them, we found two schemes, which are described below.
The two schemes are suggested by representing the initial state |ψ̄AC1⟩|ψ̄BC2⟩ in the basis (9).

Specifically, we analyze the following identity,

|ψ̄AC1⟩|ψ̄BC2⟩ =
√
pµ+ |µ+

C1C2
⟩|φ̈AB⟩

+
√
pν+ |ν+

C1C2
⟩|ψ̈A,B⟩

−
√
pν− |ν−

C1C2
⟩|
...
ψA,B⟩

−
√
pµ− |µ−

C1C2
⟩|
...
φA,B⟩. (12)

Here we have defined the possible outcome states of the qubits AB,

|φ̈AB⟩ =
αγ y|00⟩ + βδx|11⟩

√pµ+

, (13a)

|ψ̈AB⟩ =
αδy|01⟩ + βγ x|10⟩

√
pν+

, (13b)

|
...
ψAB⟩ =

αδx|01⟩ − βγ y|10⟩
√
pν−

, (13c)

|
...
φAB⟩ =

αγ x|00⟩ − βδy|11⟩
√pµ−

, (13d)

and their respective probabilities,

pµ+ = α2γ 2y2 + β2δ2x2, (14a)

pν+ = α2δ2y2 + β2γ 2x2, (14b)
pν− = α2δ2x2 + β2γ 2y2, (14c)
pµ− = α2γ 2x2 + β2δ2y2. (14d)

ere x is an important measuring-basis parameter to be strategically set in each of the following
chemes. By this, we fix the required amount of entanglement of the measuring-basis (9).

.3.1. Third strategy
It is worth noting that the concurrences of the outcomes (13) can attain the maximal value 1,

ut at different x values. Specifically, the state |φ̈AB⟩ is maximally entangled at x = x1, the outcome
ψ̈AB⟩ at x = x2, the state |

...
ψAB⟩ at x = x3, and |

...
φAB⟩ at x = x4, where,

x1 =
αγ√

α2γ 2 + β2δ2
, (15a)

x2 =
αδ√

α2δ2 + β2γ 2
, (15b)

x3 =
βγ√

α2δ2 + β2γ 2
, (15c)

x4 =
βδ√

α2γ 2 + β2δ2
. (15d)
6
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In general, these xi are different and, according to (3), they are ordered as follows,

x1 ≤ x2 ≤
1

√
2

≤ x3 ≤ x4, if α ≤ γ , (16a)

x1 ≤ x3 ≤
1

√
2

≤ x2 ≤ x4, if α ≥ γ . (16b)

his means that the possible EPR outcomes are displaced in the x measuring-basis parameter.
Besides, by considering (3) with α ̸= β and γ ̸= δ, we observe that |

...
φA,B⟩ does not exhibit

maximal entanglement, since x4 /∈ [0, 1/
√
2] (see condition (10)). On the other hand, the maximal

ntanglement outcome can be at |ψ̈AB⟩ or at |
...
ψAB⟩, depending on the relation between α and γ . In

ddition, note that if (3) is not satisfied, then |
...
φA,B⟩ exhibits maximal entanglement instead of |φ̈A,B⟩.

Therefore, to obtain the EPR projection, we choose a xi associated with the greatest probability value.
By replacing the xi in their respective probability (14), we realize that the greatest probability is Ps3 ,
which is given by,

Ps3 =

{
pν+ (x2), if α ≤ γ ,

pν− (x3), if α ≥ γ ,

=
2α2β2δ2γ 2

α2δ2 + β2γ 2 ,

=
CAC1CBC2C

−

C1C2

4
. (17)

This probability is smaller than or equal to the ones found in the first and second strategy, i.e.,

Ps3 ≤ Ps1 ≤ Ps2 , (18)

thus, Ps3 becomes a lower bound value for the probability of success. Note also that Ps3 ≤ 1/4
and the equality only holds true for the limit of the basic scheme, i.e., CAC1 = CBC2 = 1 and
x1 = x2 = x3 = x4 = 1/

√
2, which means that each outcome is maximally entangled and each

one can be obtained with probability 1/4.
In general, in spite of (18), it is worth realizing that x2 and x3 are different from 1/

√
2, which

eans that maximal entanglement is not required in the measuring-basis (9) in order to have
probability different from zero for obtaining an EPR projection in the outcome (13b) or (13c).
pecifically, the values x2 and x3 are associated with the same special value C−

C1C2
of the concurrence,

C−

C1C2
= CC1C2 (x2) = CC1C2 (x3).

From Eq. (11) we can note that if one of the two initial concurrences, CAC1 or CBC2 , is equal to 1, to
ay CAC1 = 1, then C−

C1C2
= CBC2 . If CAC1 = CBC2 , then we can conclude that C−

C1C2
= 1. On the other

and, if one of the two initial concurrences, CAC1 or CBC2 , is equal to 0, then C−

C1C2
= 0 and Ps3 = 0.

The significance of these results is that there occurs a probability different from zero of
ccomplishing the EPR projection without requiring maximal entanglement in the measuring-basis.
hat motivates us to propose the following strategy.
Here we want to mention that in Ref. [36] the authors focus on the study of behavior and the

elationship among the concurrences of the outcome states, the parameter of the measuring-basis,
nd the respective probabilities of the outcome states.

.3.2. Fourth strategy
Once the measurement result (9) is known, one of the receivers, A or B, can probabilistically

xtract an EPR state by means of the local USE procedure from the respective outcome (13).
According to Appendix the conditional probabilities of successfully extraction depend on the

elation between α and γ and is read as follows. If the outcome is |φ̈ ⟩, then the conditional
AB

7
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probability pext,φ̈ for extracting a Bell state becomes,

pext,φ̈ =

⎧⎨⎩
2β2δ2x2

pµ+
, if x ≤ x1,

2α2γ 2y2

pµ+
, if x ≥ x1.

(19a)

f the outcome is |ψ̈A,B⟩, then the conditional probability of success pext,ψ̈ is,

pext,ψ̈ =

⎧⎨⎩
2β2γ 2x2

pν+
, if x ≤ x2,

2α2δ2y2
pν+

, if x ≥ x2.
(19b)

f the outcome is |
...
ψA,B⟩, then the conditional success probability pext,...ψ reads,

pext,...ψ =

⎧⎨⎩
2α2δ2x2

pν−
, if x ≤ x3,

2β2γ 2y2

pν−
, if x ≥ x3.

(19c)

f the outcome is |
...
φA,B⟩, then the conditional probability pext,...φ of extracting an EPR state is given

by,

pext,...φ =
2α2γ 2x2

pµ−

. (19d)

hus, from each possible outcome (13) an EPR state can be probabilistically extracted. Therefore,
he total success probability is given by the sum of the probabilities (14), each one multiplied by
ts respective conditional probability for extracting (19), i.e.,

Ps4 (x) = pµ+pext,φ̈ + pν+pext,ψ̈ + pν−pext,...ψ + pµ−pext,...φ .

imilarly, for evaluating Ps4 (x), we must take into account the relation between α and γ . In
onsequence, the total success probability becomes,

Ps4 (x) =

⎧⎨⎩
2x2, if x ≤ x1,
2α2γ 2

+ 2
(
α2δ2 + β2γ 2

)
x2, if x1 ≤ x ≤ min {x2, x3} ,

2min
{
α2, γ 2

}
, if min {x2, x3} ≤ x ≤ 1/

√
2.

(20)

rom the expression (20) we notice the following effects:

• The slope of Ps4 (x) exhibits two discontinuities, at x1 and min {x2, x3}.
• The probability increases for x ∈ [0,min {x2, x3}], hence for x ∈ [min {x2, x3} , 1/

√
2] the

probability Ps4 (x) is constant and is equal to the maximal value obtained in the second strategy.
• The threshold entanglement value is found, equal to the threshold value of the second strategy,

but here the threshold value depends on CAC1 and CBC2 for all x ∈ [min {x2, x3} , 1/
√
2].

• The maximal probability 2min
{
α2, γ 2

}
is achieved at x = min {x2, x3}, which in general is

smaller than 1/
√
2. Therefore, the maximal entanglement in the measuring-basis (9) is not

required for reaching the optimal success probability.
• There are two special values, C±

C1C2
, for measuring-basis concurrence, in which Ps4 (x) changes

its behavior; at CC1C2 = C±

C1C2
the probability (20) abruptly changes its slope, but for all

CC1C2 (x) ≥ Csv− the probability Ps4 (x) remains constant at its maximum value.

Although C−

C1C2
is different from CAC1 and CBC2 , it plays the role of an entanglement threshold value,

which is a function of the initial concurrences.
This strategy combines the best characteristics of the second and third strategy, i.e., it has

the highest probability, obtained in the second strategy, and demands the special value for the
concurrence of the measuring-basis, found for the third strategy. Fig. 3 illustrates the behavior of
(20) as a function of CBC2 and CC1C2 for CAC1 = 0.7; the increasing surface clearly shows the abrupt
change of slope, and the plateau in the surface corresponding to the twofold threshold effect.
8
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Fig. 3. Success probability Ps4 as a function of CBC2 and CC1C2 for CAC1 = 0.7.

Therefore, by considering the greatest probability of success and the entanglement as a resource,
he fourth strategy is more efficient than the others three.

. Conclusions

We have addressed an unambiguous entanglement swapping scheme, with the main task of
rojecting two qubits onto an EPR state. In our analysis, the target is to maximize the probability
f success and to minimize the required entanglement in the measuring-basis.
We have introduced three levels of entanglement, two of them in the initial states and an-

ther one by considering non-Bell state in the measuring-basis. Additionally, we proposed the
nambiguous state extraction scheme as mechanism for implementing the unitary-reduction local
perator.
These considerations allow us to design four strategies for achieving the EPR projection. The

irst one enables to accomplish the EPR projection, but with non-optimal probability of success.
or the second strategy, we found the upper bound value of the success probability, related to an
ntanglement threshold effect between the two concurrences of the initial states, i.e., the maximal
uccess probability is determined by the smallest entanglement value of the initial states. The third
trategy has the lower bound value of the success probability, but gives account that the main
ask can be accomplished without maximal entanglement in the measuring-basis. Thus, the three
chemes lead us to suggest the fourth strategy. We consider the fourth strategy as the optimal
ne, because it combines the best characteristics of the second and third strategy, i.e., it performed
ith the upper bound value of the success probability, found also in the second strategy, and it
emands the non-maximal special value for the concurrence of the measuring-basis, found also for
he third strategy. We realized that the concurrences special value C−

C1C2
plays the role of a threshold

ffect between it and the initial concurrences. Therefore, there is a scheme with optimal success
robability, which does not require maximal entanglement in the measurement process. In other
ords, the entanglement threshold effect between the two initial concurrences matches with C−

C1C2
;

thus, any concurrence value greater than C−

C1C2
does not affect the success probability, i.e., it remains

constant.
Besides, we found another special value C+

C1C2
, for which the increasing success probability

changes its slope abruptly.
Here we have shown that, in order to accomplish the main task of the entanglement swap-

ping with maximal probability, the maximal entanglement in measuring-basis is not required,
−
equivalently, the special value CC1C2

is necessary and sufficient.

9
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ppendix. Optimal EPR extraction

Here we succinctly show that the locally applied USE protocol [39,41] allows us to extract an
PR state, with optimal probability, from a partially entangled state |ψ̄ij⟩, shared by the qubits i and
, i.e.,

|ψ̄ij⟩
local USE

→
|0i⟩|1j⟩ + |1i⟩|0j⟩

√
2

, (A.1)

ith,

|ψ̄ij⟩ = u|0i⟩|1j⟩ + v|1i⟩|0j⟩. (A.2)

The {|0⟩, |1⟩} are eigenstates of the Pauli operator σz of the qubit labeled by the subindex.
Without loss of generality, we assume that u and v are real and non-negative numbers and due
to normalization u2

+ v2 = 1. The entanglement of the initial state (A.2) can be valued by the
concurrence Cψ̄ = 2uv [7,8].

The local operation can be indistinctly applied onto qubit i or j. For instance, let us consider the
qubit i and an auxiliary qubit a, initially in the state |0a⟩. Because the probability amplitude must
have a module smaller than or equal to 1, we have to consider two cases:

(i) If u ≤ v, we apply the joint unitary Uia onto the tensorial product state |ψ̄ij⟩|0a⟩, with,

Uia = |0i⟩⟨0i| ⊗ Ia + |1i⟩⟨1i| ⊗ Ua, (A.3)

Ua|0a⟩ =
u
v
|0a⟩ +

√
1 −

u2

v2
|1a⟩,

here Ia is the identity operator of the auxiliary qubit a. Thus, Uia transforms |ψ̄ij⟩|0a⟩ as follows,

Uia|ψ̄ij⟩|0a⟩ =
√
2u

|0i⟩|1j⟩ + |1i⟩|0j⟩
√
2

|0a⟩

+

√
v2 − u2|1 ⟩|0 ⟩|1 ⟩,
i j a

10
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from where we realize, that by measuring σz of the auxiliary qubit, the pair ij is projected onto an
EPR state with probability pext = 2u2, otherwise the correlation is lost.

(ii) If u ≥ v, we must apply the following joint unitary,

Uia = |0i⟩⟨0i| ⊗ Ua + |1i⟩⟨1i| ⊗ Ia, (A.4)

Ua|0a⟩ =
v

u
|0a⟩ +

√
1 −

v2

u2 |1a⟩,

o obtain,

Uia|ψ̄ij⟩|0a⟩ =
√
2v

|0i⟩|1j⟩ + |1i⟩|0j⟩
√
2

|0a⟩

+

√
u2 − v2|0i⟩|1j⟩|1a⟩.

Similarly, by measuring σz of the auxiliary qubit, the pair ij is projected onto an EPR state with
probability pext = 2v2, otherwise the correlation is lost.

Therefore, for any given bipartite pure state |ψ̄ij⟩ the probability pext of extracting an EPR state
by means of local operators and one way classical communication becomes,

pext = 2min
{
u2, v2

}
,

= 1 −

√
1 − C2

ψ̄
, (A.5)

where u and v are its Schmidt coefficients.
We highlight that the probability expression(A.5) agrees with the optimal ones found in

Refs. [43–45,47]. It is worth mentioning here that, the joint unitaries (A.3) and (A.4) can be
implemented experimentally in different physical systems [48–51] by composition of local unitaries
and CNOT gates [52–54].

Additionally, if the initial state is |φ̄ij⟩ = u|0i⟩|0j⟩ + v|1i⟩|1j⟩, then it can be transformed to |ψ̄ij⟩

by applying the local unitary rotation Uj = e−i(I−σx)pi/2 onto qubit j, and the above described scheme
can be implemented.
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