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A B S T R A C T

Measuring complexity statistical indicators is a key method to analyze and characterize dynamical systems. In
this work, we perform a comparative analysis among the López-Ruiz, Mancini & Calbet complexity indicator
and the largest Lyapunov exponent for the convection problem of a viscoelastic fluid in a porous medium with
feedback control based in an Oldroyd carrier liquid through a four-dimensional generalized Lorenz system.
With both indicators can be distinguished from chaotic to periodic states. We perform intensive numerical
simulations with 4 × 106 in the space parameters, finding good agreement between them, such that difference
is close to 2%. We have also detected that the computing time is much faster in the case of complexity indicator
than for Lyapunov exponents. Finally, we have also studied the effect of the initial conditions in the coexistence
states, encountering multistability.
Introduction

The concept of entropy plays a crucial role in macroscopic systems
in order to determine the condition for thermodynamic equilibrium.
The probability distribution of a restricted system to the accessible
states is given by the principle of maximum entropy inference [1].
The typical macroscopic magnitudes as well as the relationship among
them can be obtained by standard statistical mechanics techniques from
the probability distribution function. In addition, in equilibrium, the
concept of entropy can be connected to the amount of information that
is accessible in a system [2]. A similar scheme could be extrapolated to
systems far from equilibrium. However, under these circumstances, it is
more difficult to establish a method to find the probability distribution
function or to figure out the relevant magnitudes, which could allow
us to predict the system behavior. This is one of the main topics of
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nonequilibrium statistical mechanics [3–5]. In this context, the first
approach to understand the dynamic states of non-equilibrium systems
from a statistical perspective was defined in the Ref. [6], which is
usually known as the López-Ruiz, Mancini & Calbet (LMC) complexity
indicator. The main assumption was to define a dynamical system for
which the complexity is obtained as the product of two measures:
the information and disequilibrium. Such information is quantified
by the Shannon entropy and the disequilibrium is a measure of the
distance from the equiprobable distribution of the accessible states of a
system. Hence, this product becomes zero for both: ordered and random
systems. Interestingly, it can be interpreted as some sort of distance
among the equiprobable states accessible by the system. Subsequently,
it is stressed here that the complexity measure does not depend only
on the concept of information (which are maximal and minimal for
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the above mentioned system). The prototype model used to test the
theory was the logistic map, which is, undoubtedly, one of the most
used models to study complex systems. Moreover, it was shown that the
sum of the positive Lyapunov exponents is equal to the Kolmogorov–
Sinai entropy [7] and that the upper bound of the Lyapunov exponents
can be obtained using the permutation Shannon entropy [8]. Therefore,
these studies provide a tangible possibility of being able to quantify
the emergence of chaos through the complexity method. Furthermore,
it has been possible to distinguish chaotic series from a noisy one [9].
Discussions, generalizations and applications of the complexity’s con-
cept can be found in Refs. [10–32]. For instance, this complexity
indicator has been used to study nonequilibrium isolated system [13],
to analyze the dynamical behavior of anti-ferromagnet [15], to exam-
ine the earthquake phenomenon [17], or to investigate astronomical
data [22]. Generalization of LMC complexity to analyze chaotic states
has also been performed [23,24] or examined the fluid motion [26]
and financial time series [28], as well. Even more, interesting recent
studies on complexity have been performed in electric circuits from
experimental and theoretical points of view [33,34]. One of them
can have an application for image encryption [33]. Apart from the
complexity measurements, the authors have found multi-stable states
with a new method to find them [34].

On the other hand, the study of convection in viscoelastic fluids has
gained a lot of interest due to its technological applications as well as
because its richness from a pure mathematical perspective. The state
of the art is exposed in Refs. [35–44]. One of the central points has
been the effect of viscoelasticity in the emergence of different types of
instabilities through variants of the Lorenz model [45–47], which was
motived by the experimental results of Kolonder who found oscillatory
convective instability in viscoelastic carrier liquids [48]. It has also
been studied how the effect of a porous medium in this type of fluid
modifies the convection thresholds [49,50]. In particular, it has been
shown that it is possible to obtain chaotic states in viscoelastic fluids
in a porous medium [51,52]. In addition, it has been shown that using
a feedback control system in fluids it is possible to induce a slow
down the instability or taming chaos [53,54]. In fact, it is possible
to stabilize the chaos using a time-delay control [55]. Recently, the
dynamical behaviors of convective rolls with feedback control for an
Oldroyd fluid have been characterized, finding intricate topological
structures of regular states embedded in chaotic domains in the two-
dimensional phase diagram of the largest Lyapunov exponent in the
parameter space [56]. The analysis was performed for fixed porosity,
then it opens the door to extend the examination of dynamics when the
porosity and the other control parameters are modified.

In this work, we perform a comparative analysis among the LMC
complexity indicator and the largest Lyapunov exponent for the prob-
lem of convection of a viscoelastic fluid in a porous medium with
feedback control based on the Oldroyd model. For this study, we use
the four-dimensional generalized Lorenz system [56], which is derived
from the equations of hydrodynamics. From the physical viewpoint, we
will focus on the effects of porosity and the feedback control parameter,
as well as viscoelasticity, which have not been previously studied. This
analysis enlarges the understanding of the influence of the viscoelastic
properties on convection problems in porous media. In particular, we
perform intensive numerical simulations for both indicators, perform-
ing several two-dimensional diagrams in the parameter space, each of
them with 4 × 106 points. We will show that there is a coincidence
of more than 98% between both dynamic indicators. The amount of
simulations ensures that the comparison of the methods has statistical
significance. Also, to perform further analysis of the dynamical system,
we compute the isospike diagrams to understand the periodicity of the
regular states. Finally, we compute the coexistence of attractors and
their corresponding basin of attractors for a specific set of parameters.
The manuscript is arranged as follows: In Section ‘‘Theoretical model:
generalized Lorenz system’’, the theoretical model for the generalized
Lorenz model is presented. In Section ‘‘Simulations’’, the dynamical
indicators and the numerical results are shown and analyzed. Finally,
2

the conclusions are given in Section ‘‘Final remarks’’.
Theoretical model: generalized Lorenz system

Let us consider a two-dimensional Oldroyd viscoelastic fluid in a
saturated porous medium heated from below and cooled from above
subject to the gravity field, such that the sensors and actuators to have
feedback control are placed at the top and bottom heated plates of the
fluid-saturated porous layer, respectively. This model is fully described
by a nonlinear coupled system of partial differential equations for the
velocity and thermal fields as well as for the stress tensor. If one consid-
ers a large container, a simplified model that describes the instability
of rolls can be derived using a truncated Galerkin expansion [57,58],
which produces a set of nonlinear ordinary differential equations. In
this scenario, the corresponding modified Lorenz equations are given
by [56]:

�̇� = 𝑊 , (1)

�̇� = �̄�𝑔𝑟𝑋 − 𝑌 −
(

�̄�𝑔𝑟 − 1
)

𝑋𝑍, (2)

̇ = 4𝛾(𝑋𝑌 −𝑍), (3)

̇ =𝜎
[(

�̄�𝑔𝑟 −
1
𝛤

)

𝑋 + 𝛤𝑌
]

− 𝜎
[(

�̄�𝑔𝑟 − 1
)

𝑋𝑍 − �̄�𝑊
]

,
(4)

where the dot (⋅) denotes the time derivative d()∕d𝜏. From the physical
oint of view, {𝑋,𝑊 } are related to the velocity field, whereas {𝑌 ,𝑍}
re related to the temperature field. Besides, for convenience, we have
sed the following notation: �̄�𝑔 = (10 − 𝐶𝑔)∕10, �̄� = (𝛬 + (𝜎𝛤 )−1), and
̄ = −1+1∕𝛤 , such that 𝐶𝑔 is feedback control parameter, while 𝛬 and
𝛤 are the retardation number and the Deborah number, respectively.
Both parameters account for the effect of viscoelasticity [45]. Also,
the parameters 𝜎 and 𝑟 are the normalized Vadasz number and the
Darcy–Rayleigh number, respectively. We remark that 𝜎 represents the
effect of porosity on the flow in a porous medium, while 𝑟 accounts
for the ratio of the buoyancy force to the diffusive resistance of the
porous media, which is also called the Rayleigh number for a porous
medium [51]. Finally, 𝛾 is a geometric parameter.

Let us remark that the previous dynamical systems, �̇� = 𝐅(𝐗), is a
generalization of the Lorenz equations, which considers the viscoelas-
ticity and the feedback control. Besides, note that, the uncontrolled
system (𝐶𝑔 = 0) was studied in Ref. [51], and the Newtonian limit
(𝛬 → 1 and 𝛤 → 0) was previously analyzed in Ref. [59]. Let us
comment on this limit, the system can be reduced to the standard
Lorenz model [57], which from a mechanical point of view, can be
interpreted as the normal form of a quasi-reversible system [60]. Also,
note that the set of uniform solutions, {𝐗0}, are obtained from 𝐅(𝐗0) =
𝟎; and their linear stability det [𝐉 − 𝐈𝜁 ] = 0, where 𝜁 are the eigenvalue
and 𝐉 is the Jacobian matrix evaluated at 𝐗0. In the next section, we
will perform intensive numerical simulations.

Simulations

In this section the dynamical behavior of the system (1)–(4) is
analyzed. The numerical method to solve the equations is the classical
fourth order Runge–Kutta method with a fixed time step of 𝛥𝜏 = 5 ×
10−3. In all simulations, we discard a time window of 8×105 time steps,
to avoid transitory states. Other values of 𝛥𝜏 have been employed to
check the accuracy, yielding no significant changes.

Indicators

We characterized the dynamical states as a function of the parame-
ters using Lyapunov exponents, LMC complexity indicator, bifurcation
diagrams and direct time-series analysis, like the isospike diagrams that

reveals how the periodicity changes when the parameters are tuned.
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Fig. 1. Phase diagrams in color code a function of both 𝛬 and 𝜎 for the LMC complexity indicator (a), the LLE (b) and the Isospike of the Z component (c). The fixed parameters
are 𝛤 = 1.0, 𝑟 = 55.0 𝛾 = 0.5, and 𝐶𝑔 = 7.0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The bifurcation diagrams are computed by counting the values of the
local maximum of the time-series of a specific variable [58].

On the other hand, for a M-dimensional dynamical system, the Lya-
punov exponents measure the sensibility to the initial conditions [61–
63]. They are commonly denoted by the symbols 𝜆𝑗 with 𝑗 = (1,… ,𝑀),
and ordered in a decreasing form, such as the largest Lyapunov expo-
nent (LLE), denoted by 𝜆1. The exponential divergence of two initially
close trajectories, which is characteristic for chaotic dynamics, is de-
tected when positive LLE are found. If the LLE is negative the state
is stationary, whereas when LLE is zero the system exhibits a regular
state, which can be periodic or quasi-periodic. Besides, if there are
two positive Lyapunov exponents, the system exhibits a hyper-chaotic
state [64–67]. If both the largest and the second largest Lyapunov
exponents are zero, the system holds a quasi-periodic state. In addition,
with the whole Lyapunov spectrum, one can calculate the Kaplan–
Yorke dimension, 𝐷𝐾𝑌 . This indicator gives the attractor’s dimension
and is a valuable tool in a dynamical system with a large number of
variables to distinguish from low dimensional chaos to spatiotemporal
one. The Kaplan–Yorke dimension can be computed as:

𝐷𝐾𝑌 = 𝑘 + 1
|𝜆𝑘+1|

𝑘
∑

𝑖=1
𝜆𝑖, (5)

such that 𝑘 is the largest integer for which ∑𝑘
𝑖=1 𝜆𝑖 ⩾ 0. This definition

implies that if there is only one positive Lyapunov exponent positive
and all the rest with negative values, 𝐷𝐾𝑌 > 1, whereas if there is one
positive and one zero Lyapunov exponent with all the rest negatives,
𝐷𝐾𝑌 > 2. Besides, if all Lyapunov exponents are negative, 𝐷𝐾𝑌 = 0.
Let us remark that, the Lyapunov spectrum technique has been well
established in several dynamical systems [62,63,68–71] and intensive
numerical simulations can be found in Refs. [72–88]. Here, we apply
the Gram–Schmidt orthogonalization procedure periodically (here, we
renormalize every 𝜏 = 1 unit). The integration for determining the
Lyapunov exponents has been prolonged for a time of 𝜏 = 215. These
very long simulations allow minimizing the error on the computed
exponents. The typical standard error on the maximum Lyapunov
exponent was approximately equal to 9 × 10−5.

To obtain the isospike diagrams [89,90], that is, to find the number
of peaks per period of the oscillations, we first calculate the Lyapunov
exponents to discard the chaotic states, and perform the integrations
for 3 × 105 time steps, recording the maxima (or minima) of the time
series of each component of the vector field, 𝐗(𝜏), and check whether
the peaks are repeated or not. Applications of isospike technique can
be found in Refs. [91–104].
3

Now, let us present a small discussion on the statistical description
of the system by using the LMC complexity indicator, C𝐿𝑀𝐶 , which
was originally derived in Ref. [6]. For this purpose, let 𝜁 = 𝜁 (𝑡) be
a time series with 𝑁 accessible states when it is observed from a
certain scale. We will call it as 𝑁-system. Eeach state corresponds to
a certain probability, then there is a set of 𝑁 probability functions,
{𝑝1, 𝑝2,… , 𝑝𝑁}, under the condition ∑𝑁

𝑖=1 𝑝𝑖 = 1, such that 𝑝𝑖 ≠ 0
for ∀𝑖. At this level, all fundamental physical laws would incorporate
the probability distribution for accessible states associated to the time
series. To compute C𝐿𝑀𝐶 , it is needed to convert the 𝑁-system into a
binary system with values 1 and 0. To do that, we employ the following
algorithm:

1.- The expected value, ⟨𝜁⟩ is calculated from the time series.
2.- The time series is normalized in the range (0, 1) by

𝜁 =
|𝜁 − ⟨𝜁⟩|

max(|𝜁 − ⟨𝜁⟩|)
. (6)

3.- The set of local maxima from the normalized time series is
calculated, {𝜁𝑚,1,… ., 𝜁𝑚,𝑃 }, and from these maxima it is taken its cor-
responding mean value 𝛴.

4.- The previous set is codified in binary code as: 0 if 𝜁𝑚,𝑗 < 𝛴 and
1 if 𝜁𝑚,𝑗 > 𝛴.

5.- For this binary code a pattern is identified from an array with a
specific 𝑛𝑠. This array is selected and it is consider a micro-state.

6.- Now, the system has been converted into chain of binary num-
bers with an integer number of micro-state. The number of all micro-
states is 𝑁 .

7.- The histogram of the integer numbers that arise which corre-
spond to the accessible micro-states, 𝑝𝑖, of the system is calculated.

8.- The steps 5–7 are repeated several times to ensure that the
optimal 𝑛𝑠 has been obtained.

9.- The information entropy of the system, H , is calculated via

H = −𝐾
𝑁
∑

𝑖=1
𝑝𝑖 log 𝑝𝑖, (7)

where 𝐾 is a positive constant.
10.- The disequilibrium function, D , is calculated through

D =
𝑁
∑

𝑖=1
(𝑝𝑖 − 1∕𝑁)2. (8)

11.- Finally, it is calculated the LMC complexity indicator, C𝐿𝑀𝐶 ,
as the product between the entropy and disequilibrium function:

C = H × D . (9)
𝐿𝑀𝐶
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Fig. 2. Bifurcation diagram of the 𝑍 component (black dots), Largest Lyapunov
exponent 𝜆𝑚𝑎𝑥 (red line) and Complexity indicator C̄ (blue line), as a function of 𝛬 at
𝜎 = 80. The other fixed parameters are the same as in Fig. 1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

We remark that for this definition of entropy, we can infer that for
a periodic and stationary states H = 0, therefore, as there is only one
single state, 𝑝. Due to 0 ⩽ D ⩽ 𝑁∕(𝑁 − 1) and to 0 ⩽ H ⩽ 𝐾 imply
that C𝐿𝑀𝐶 ⩾ 0. Therefore, in deterministic dynamical systems, C𝐿𝑀𝐶
for stationary and periodic states is zero (C𝐿𝑀𝐶 = 0), while for chaotic
states is greater than zero, C𝐿𝑀𝐶 > 0.

For the present problem, the LMC complexity indicator is computed
for each component of the vector field 𝐗, and then we take the average:

C̄ =
C𝐿𝑀𝐶,𝑋 + C𝐿𝑀𝐶,𝑌 + C𝐿𝑀𝐶,𝑍 + C𝐿𝑀𝐶,𝑊

4
(10)

Also, let us comment that to calculate micro-states array, we have
used 𝑛𝑠 = 12. We have explored other values of 𝑛𝑠 and we found that
this one was optimal value. In this context, we would also remark that
the same value of 𝑛𝑠 has been used for the original LMC work and
in other dynamical systems as well [6,9,13,16]. From the numerical
point of view, to ensure to have a good statistic, we have used after
the transient a time series with 4 × 106 time steps.

In the next subsections, we present numerical results of these dy-
namical indicators and make a comparison of them. Due to the large
numbers of parameters, we fix 𝑟 = 55.0, 𝛤 = 1.0 and 𝛾 = 0.5, while the
parameters 𝜎, 𝛬, as well as 𝐶𝑔 will be varied. These parameters account
the effect of the porosity, the viscoelasticity and the feedback control,
respectively. In several simulations, two parameters are simultaneously
varied, creating two-dimensional phase diagrams of the different dy-
namical indicators. The resolution of each diagram is 2000 × 2000
in the parameter space. Finally, let us comment that for most of the
simulations, we fix the initial conditions at 𝐗(𝜏 = 0) = (0.9, 0.9, 0.9, 0.1),
except in the last subsection in which the influence of initial conditions
is examined.

Effects of the porosity and viscoelasticity

Fig. 1 shows color code two-dimensional phase diagrams as a func-
tion of 𝛬 and 𝜎 for the largest Lyapunov exponent, 𝜆𝑚𝑎𝑥, complexity
indicator, C̄ as well as for the isospikes. Let us remark that when 𝜆𝑚𝑎𝑥
is zero or lower than zero the system exhibits regular states, which are
4

(quasi)-periodic or stationary states, respectively. In these cases, one
always has that C𝐿𝑀𝐶 = 0, because it does not discriminate among
periodic and fixed point states because in both cases it is zero. We
can observe that critical value of 𝛬 as a function 𝜎 from the linear
stability analysis follows the relationship 𝛬𝐻 (𝜎) = −𝑎∕𝜎2 + 𝑏∕𝜎1∕3

where (𝑎, 𝑏) = (11.0054, 2.06637). Bellow the critical curve, the states
are mostly chaotic. We can distinguish some internal structure where
there are regular pattern embedded in chaotic domains. Besides, when
it is compared the results from the panel (a) and (b) of Fig. 1, one can
find a difference near to 2% between both dynamical indicators. This
is an excellent agreement. From the third panel, in which the isospikes
are shown, it is easy to distinguish the types of regular states. The white
area corresponds to fixed points, while the discrete color bar provides
the value of the periodicity, being black color chaos. We can observe
that this diagram presents more information. It shows clearly the limit
between the combined chaotic states, limit cycles and fixed point states
(white region from panel c). From the physical point of view, in Fig. 1,
we can notice that we will only have stationary convection rolls in
the zone higher than the 𝛬𝐻 curve. It also means that this regime
continues for fluids closer to Newtonian behavior (near to 𝛬 ≳ 0.9),
regardless of the fluid’s porosity (any value of the Vadasz number).
For intermediate Vadasz values (10 ≲ 𝜎 ≲ 40), the convection rolls
are chaotic or have high periodicities for a large spectrum of 𝛬 values.
Indeed, it is shown that viscoelasticity can tame chaos, having periodic
solutions in a regime close to the Maxwellian fluid (𝛬 ≈ 0). We also
note that there is an engaging zone at high porosity (𝜎 ≳ 55) bellow
𝛬𝐻 curve, the rolls undergo a bifurcation from stationary to periodic
states with period one. In fact, for instance, if one fixes 𝜎 = 80 after the
period-one regime by reducing the elastic coefficient values, a cascade
of bifurcations is produced before reaching chaos.

Fig. 2 shows 𝜆𝑚𝑎𝑥, the complexity indicator C̄ and a bifurcation
diagram of the Z component as a function of 𝛬 at 𝜎 = 80. This is a line
of the complexity indicator phase diagram 1 at 𝜎 = 80 with a greater
resolution in 𝛬, with 2 × 104 lattice points. We can observe that the
bifurcation diagram shows an extended view of the unfolding periodic
bifurcations as 𝛬 increases, from chaos, passing from several multi-
periodic states to period one solution. We can also verify that the 𝜆𝑚𝑎𝑥
and C̄ has an excellent agreement in the whole range of the bifurcation
parameter. In fact, the inferior part of Fig. 2 shows a barcode that
represents the difference between C̄ and 𝜆𝑚𝑎𝑥 from which we found that
the percentage difference is only 1%. Let us remark that the differences
are mainly occurred in the transition among periodic and chaotic states,
in which the numerical sensibility of the indicators is crucial.

Fig. 3 displays three specific examples of the dynamical behaviors,
one chaotic and two periodic states taken form previous simulations for
three fixed values of 𝛬. In particular, we choose 𝛬 = (0.2, 0.21, 0.24),
respectively. The top panels show the time series of the 𝑍 component,
while the bottom ones display the three dimensional parametric plot
of (𝑋, 𝑌 ,𝑍) components in the phase space. Panel (a) corresponds to
a chaotic state, where a similar Lorenz attractor is obtained, whereas
panel (b) and (c) show periodic cases. We can observe that for the
periodic cases have four- and two-isospike, respectively. In these cases,
the values of complexity are C̄ = (0.07, 0, 0), as we expected the not
zero value of C̄ is for the chaotic state.

Effects of the porosity and feedback control

Now, let us focus on the effects of porosity and feedback control
in detail. Fig. 4 shows the phase diagrams in color code of the com-
plexity indicator, C̄ , the isospike diagram of the 𝑍 component, and
the distribution of the periods calculated using fast Fourier transform
of all components as a function of normalized Vadasz number, 𝜎, and
the feedback control parameter 𝐶𝑔 . From panel (a) we can distinguish
between chaotic (C̄ > 0) and regular (C̄ = 0) states. Indeed, we
observe that the chaos appears for 𝜎 ≳ 4 and 𝐶𝑔 ≲ 8.2. Typical shrimp
patterns from the different periodic islands can be observed in this
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Fig. 3. Time series of the 𝑍 component and three dimensional phase diagram of the components (𝑋, 𝑌 ,𝑍) for (a) chaotic state, (b) a periodic state with 4-isospike and (c) periodic
state with 2-isospike. The fixed values of 𝛬 are 𝛬 = (0.2, 0.21, 0.24), respectively. The other fixed parameters are the same as for Fig. 2.
Fig. 4. Phase diagrams in color code a as function of both 𝐶𝑔 and 𝜎 for LMC complexity indicator (a), isospike diagram of the Z component (b) and period distribution (c). The
resolution in each panel is 𝛥𝐶𝑔 = 0.005 and 𝛥𝜎 = 0.05. The fixed parameters are: 𝛤 = 1.0, 𝛬 = 0.20, 𝑟 = 55.0 and 𝛾 = 0.5. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
region. Panel (b) provides information to discriminate between fixed
point states and periodic states within the number of peaks in the time
series of each periodic state. In this region, typical shrimp patterns from
the different periodic islands can be observed. Also, we can observe
that for 𝜎 > 40, a route towards chaos through the doubling of the
bifurcation period as 𝐶𝑔 decreases. The same happens for 𝜎 ∈ (20, 40)
for 𝐶𝑔 < 4. Finally, panel (c) displays the phase diagram of the period
distribution in arbitrary units. In the color bar, we have chosen black
and white for chaotic and fixed points in which the period has no
meaning. We can notice that for small values of isospike, the period
is small too, and it increases when the values of isospike increase,
given a strong correlation among both diagrams. From the physical
point of view, we have chosen a parameter region that represents a
standard Oldroyd viscoelastic fluid (𝛤 = 1.0 and 𝛬 = 0.2) with a high-
temperature gradient since the Darcy–Rayleigh number is 𝑟 = 55.0. We
5

note that above the 𝐶𝑔, 𝐻 (𝜎) = 10.588∕𝜎0.029 − 15∕𝜎2 curve, all states
are stationary convection rolls. Just after crossing the Hopf bifurcation,
for high values of the feedback control parameter, the rolls bifurcate
to periodic states with period-one, almost independent of porosity.
Then in the intermediate zone of both parameters, there are multiple
transitions among different states. On the other hand, we can also
observe that when the feedback control parameter is less than half the
maximum value, the chaotic states practically dominate for high and
intermediate porosities.

Fig. 5 shows a zoom of the square in panel (a) of Fig. 4. It reveals a
successive periodic structure pattern with shrimp form, which appear
linearly ordered while their size increases as 𝜎 increases and 𝐶𝑔 di-
minishes. Other smaller periodic structures also occur, but to reveal
the shape, iterative zooms are needed. Panel b presents a bifurcation
diagram of the maximum values of Z, C̄ and 𝜆 as a function of the
𝑚𝑎𝑥
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Fig. 5. Panel (a) shows an extended view of the Complexity phase diagram of Fig. 4a. Panel (b) corresponds to the bifurcation diagram, 𝜆𝑚𝑎𝑥 and the complexity corresponding
to the solid line marked in panel (a). Panel (c) corresponds 3D plots in the phase space of the (𝑋, 𝑌 ,𝑍) components for the following fixed values: (I) 𝜎 = 60.0, (II) 𝜎 = 61.2, (III)
𝜎 = 61.5 and (VI) 𝜎 = 61.7. All the other fixed parameters are the same as in the Fig. 4.
Fig. 6. (a) Bifurcation diagram of the 𝑍 component, (b) Kaplan–Yorke Dimension, 𝐷𝐾𝑌 , and (c) Complexity indicator C̄ , as a function of 𝛬 starting with three different initial
conditions. The three panels for each indicator represent different initial conditions, which are colored to identify by red (top), blue (intermediate) and green (bottom), respectively.
The fixed parameters are: 𝛤 = 1.0, 𝑟 = 55.0, 𝜎 = 58.0, 𝛾 = 0.5 and 𝐶𝑔 = 8.0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
parameter 𝜎 for a fixed value of the feedback control, 𝐶𝑔 = 8.0. We
observe coincidence among the three indicators. In the chaotic regions
where 𝜆𝑚𝑎𝑥 > 0, the bifurcation diagram shows dispersion associated
with the maxima from the time series. We present a time window series
that adjust very well to the indicators 𝜆 and C̄ . The bifurcation
6

𝑚𝑎𝑥
diagram shows a route to chaos through the doubling of the period
as 𝜎 decreases. In the lower part of panel (b) of Fig. 5, we show a
bar that marks the distinct behavioral dynamics of the complexity C̄
and 𝜆𝑚𝑎𝑥. Note that the differences are easily observed at the frontiers
between periodic and chaotic states with a percentage difference of less
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Fig. 7. Isospike diagram of the 𝑍 component as a function of the initial condition
𝑊0 and 𝑍0 at (𝑋0 , 𝑌0) = (−34, 1.6). The fixed parameters are the same as in Fig. 6 at
𝛬 = 0.199.

than 1.5%, which is a slight difference. Lastly, panel (c) shows four
particular cases in the phase space for the 𝑋, 𝑌 , and 𝑍 components’
behaviors. The selected parameters are marked in the Fig. 5b. For the
case, (I) in 𝜎 = 60.0 corresponds to a chaotic state with a 𝜆𝑚𝑎𝑥 = 0.29,
where once again a Lorenz-like attractor is obtained. Cases (II), (III),
and (IV) correspond to a state with 12, 6, 4, and 2 isospike, where a
periodic doubling sequence is lost. The diagram shows a discontinuity
in the branches when 𝜎 = 61.2 due to the system presenting dual
stability.

Effects of the initial conditions

Usually nonlinear systems, like generalized Lorenz model, can have
multistable solutions, some of them are hidden attractors [34,62,86,97,
100,105–111]. For instance, it has been recently found the coexistence
of several attractors in a hyper-chaotic system [34]. Furthermore, in the
Lorenz model has been found hidden attractors that coexists with other
well known solutions [111]. Therefore, in this last subsection we study
the effect of the initial conditions in order to explore the possibility of
coexistence of different attractors in our dynamical system.

Panel (a) of Fig. 6 shows the bifurcation diagram of the 𝑍 com-
ponent, panel (b) the Kaplan–Yorke dimension, 𝐷𝐾𝑌 , and panel (c) the
complexity indicator C̄ , as a function of 𝛬, starting with three different
initial conditions. We have performed the continuation processes for
each of them. Also, there are sub-panels with different colors per
condition. In particular, we have taken the values of these initial
conditions at the beginning of the diagram as follows: 𝐗(𝑟)(𝜏 = 0) =
(−4.65,−0.40, 0.63,−0.30) (red), 𝐗(𝑏)(𝜏 = 0) = (−3.27,−0.15, 1.49, 46.7)
(blue) and 𝐗(𝑔)(𝜏 = 0) = (2.37, 0.85, 0.94, 9.01) (green). We can definitely
observe that there are multistability among plenty of different states.
We can also see that the transition from a regular to a chaotic state
differs depending on the branch. However, all branches converge into
the same periodic state in the range 𝛬 ∈ (0.199956, 0.201496) and
then suddenly bifurcate to chaos at 𝛬 = 0.201498. There are more
similarities between the blue and green branches in the range 𝛬 ∈
(0.199644, 0.198058), in which both exhibit only chaotic states, whereas
the red one displays only periodic states. On the other hand, we can
notice that the three indicators show good agreement among them.

Now, let us analyze in more detail the basin of attractions of
different states for two specific sets of parameters. In particular, we
will focus on two cases, one in which there is coexistence of chaotic and
periodic states and the other in which there is coexistence only among
regular states. These sets are depicted as I and II in the bifurcation
diagrams, respectively. Panel (a) of Fig. 7 shows the two-dimensional
isospike diagram of the Z-component as a function of the values of
the initial conditions 𝑊0 and 𝑍0 for fixed (𝑋0, 𝑌0). In this wide range
of values, there are only two types of solutions, chaotic and periodic,
7

with a 6-spike per period. The regular regions form quite fascinating
Fig. 8. Isospike diagram of the 𝑍 component as a function of the initial condition
𝑋0 and 𝑍0 at (𝑌0 ,𝑊0) = (0.9, 0.1). The fixed parameters are the same as in Fig. 6 at
𝛬 = 0.2.

patterns. In particular, we can observe a double spiral pattern, as it can
be seen in the zoom exposed in panel (b) of the same figure. Finally,
panel (a) of Fig. 8 displays the two-dimensional isospike diagram of the
Z-component as a function of the values of the initial conditions 𝑋0 and
𝑍0 for fixed (𝑌0,𝑊0). This diagram corresponds to the parameter set
II. Here, we can observe that there is coexistence among three regular
states with 3-, 26- and 52-isospike, repetitively. It can be seen that for
negative values of 𝑍0, there is no apparent order, such that the least
predominant state is the 3-isospike. For positive values of 𝑍0, an order
emerges. A zoom is shown in panel (b) to notice better the pattern
formation, where we see boomerang-like structures for the three types
of periodic states.

Final remarks

In this manuscript, we have performed a comparative analysis of
different dynamical indicators in the problem of the convection of a vis-
coelastic fluid in a porous medium with a control feedback mechanism.
The system has been characterized by a set of four coupled nonlinear
differential equations. We have focused mainly on the characterization
by the largest Lyapunov exponent and LMC complexity indicator. We
have carried out intensive numerical simulations in the space parameter
with resolutions in the phase diagrams of 2000 × 2000. Making a
comparative analysis, we have been able to conclude that there is only
a discrepancy of less than 2% between both indicators. This result is
noteworthy because with C𝐿𝑀𝐶 , it is only necessary to work with the
time series, which significantly reduces the computation time. In fact,
the ratio between the computation time of C𝐿𝑀𝐶 and LLE for each
phase diagram is almost five times faster when LLE is computed for
a time of 𝜏 = 215, whereas it is 174 times faster when 𝜏 = 221. Let us
remark since the LMC complexity indicator could be more accessible for
experiments than the Lyapunov spectrum, which is more challenging
to obtain. For completeness, we have also performed an analysis of the
periodicities of the regular states using isospike diagrams, which reveal
a rich structure in the space parameter. In addition, we have analyzed
the influence of the initial conditions on the dynamical behavior for
two different sets of parameters, finding bi-stability between a periodic
and a chaotic state, and multistability among three regular states,
respectively. In the near future, we will extend the study of complexity
to other dynamical systems where the parameter space has been studied
thoroughly from the Lyapunov exponents, as it is the case of magnetic
systems.
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