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Introduction: Phytopathogenic fungi are a considerable concern for agriculture, 
as they can threaten the productivity of several crops worldwide. Meanwhile, 
natural microbial products are acknowledged to play an important role in modern 
agriculture as they comprehend a safer alternative to synthetic pesticides. 
Bacterial strains from underexplored environments are a promising source of 
bioactive metabolites.

Methods: We applied the OSMAC (One Strain, Many Compounds) cultivation 
approach, in vitro bioassays, and metabolo-genomics analyses to investigate 
the biochemical potential of Pseudomonas sp. So3.2b, a strain isolated from 
Antarctica. Crude extracts from OSMAC were analyzed through HPLC-QTOF-MS/
MS, molecular networking, and annotation. The antifungal potential of the extracts 
was confirmed against Rhizoctonia solani strains. Moreover, the whole-genome 
sequence was studied for biosynthetic gene clusters (BGCs) identification and 
phylogenetic comparison.

Results and Discussion: Molecular networking revealed that metabolite synthesis 
has growth media specificity, and it was reflected in bioassays results against 
R. solani. Bananamides, rhamnolipids, and butenolides-like molecules were 
annotated from the metabolome, and chemical novelty was also suggested 
by several unidentified compounds. Additionally, genome mining confirmed a 
wide variety of BGCs present in this strain, with low to no similarity with known 
molecules. An NRPS-encoding BGC was identified as responsible for producing 
the banamides-like molecules, while phylogenetic analysis demonstrated a close 
relationship with other rhizosphere bacteria. Therefore, by combining -omics 
approaches and in vitro bioassays, our study demonstrates that Pseudomonas 
sp. So3.2b has potential application to agriculture as a source of bioactive 
metabolites.
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1. Introduction

Phytopathogenic fungi can lead to substantial crop losses, as many 
are causative agents of plant diseases that are difficult to manage. 
Rhizoctonia solani is a necrotrophic soil fungus that can harm several 
commercial crops such as soybean, maize, and other essential plants 
from Amaranthaceae, Araceae, Asteraceae, Brassicaceae, Fabaceae, 
Linaceae, Malvaceae, Poaceae, Rubiaceae, and Solanaceae families 
(Ajayi-Oyetunde and Bradley, 2018). Currently, R. solani management 
can be partially performed by agrochemicals. Still, this approach is 
costly and is often related to environmental risks like soil 
contamination, the extermination of non-targeted populations of life 
forms, and even the impact on human health (Tahmidur Rahman 
et al., 2020). From this perspective, using natural products isolated 
from antagonistic microorganisms for pest control is usually an 
advantageous alternative to using harmful pesticides in the field crops. 
Natural products are currently quoted as promising tools for 
sustainable crop management (Pirttilä et  al., 2021; Palmieri 
et al., 2022).

However, several challenges must be overcome for a microbe-
derived bioactive compound to be discovered and become a product 
(Li et al., 2019). For instance, chemical redundancy in biodiscovery 
programs has presented itself as an obstacle (Chandra Mohana et al., 
2018; Qin et al., 2022). The natural products community has used 
different methodological strategies to overcome these difficulties and 
make biodiscovery more efficient. One of these is to search for 
bioactive compounds in strains from extreme environments, as these 
places constitute underexplored areas and, over time, extremophile 
microorganisms developed their ways to survive and occupy niches 
under drastic conditions of temperature, salinity, humidity, pH, 
radiation, and many other stresses (Yadav, 2021). Therefore, the 
natural history of these environments has led to the evolution of 
microbial groups with unique properties, as in those locations, their 
chemical potential could be enhanced naturally (Maurya et al., 2020). 
For example, several Pseudomonas strains from extreme environments 
such as polar regions led to isolating important novel bioactive 
compounds like diketopiperazines, phenazine alkaloids, pigments, 
and exopolysaccharides (Jayatilake et al., 1996; Carrión et al., 2015; 
Styczynski et al., 2022).

Another approach for biodiscovery programs consists of 
diversifying culture conditions, such as culture media composition, 
temperature, pH values, and other factors. The so-called OSMAC 
(One Strain, Many Compounds) strategies are based on the fact that 
even minor variations in culture conditions can promote the synthesis 
of several different secondary metabolites by the same strain (Bode 
et al., 2002). OSMAC experiments may be carried out by evaluating 
culture conditions individually to find the most exciting results, 
assisting the optimization of natural compound production through 
complete experimental planning with statistical analysis (Romano 
et al., 2018).

On the other hand, -omics techniques can also aid in avoiding 
redundancy and rediscovery of natural products from microbial 
cultures. Through metabolomics, it is possible to explore the metabolic 
information of biological samples, annotate known compounds, 
recognize the structural differences in the compounds and their 
analogs by computational methods, and guide the selection of 
metabolites for isolation (Atanasov et al., 2021). Besides, the genomic 
era has increased the possibilities for discovering new natural 

products. Studies have demonstrated that the genes responsible for 
producing specialized bacterial metabolites often lie together within 
a genome as biosynthetic gene clusters (BGCs) (Kenshole et al., 2021). 
The automated BGC finding in genome sequences has significantly 
contributed to the mining of microbial genomes for natural product 
discovery, also helping to predict their synthesis pathways, regulation, 
transport, and molecular structure in some cases (Kenshole et al., 
2021). Hence, the combination of metabolomics and genomics allows 
the establishment of links between BGCs and the metabolites, 
increasing the chances of predicting bioactivity and molecular 
structures of potentially novel compounds (Leão et al., 2022).

The genus Pseudomonas, one of the most abundant groups of 
bacteria dwelling in the soil and plant rhizosphere, is known due to its 
broad lines of action in agricultural needs, including the production 
of several enzymes and metabolites skilled in the suppression of 
phytopathogens (Nadeem et al., 2016). Currently, some Pseudomonas-
based bioproducts are available on the market to implement the 
control of essential plant diseases agents like Rhizoctonia solani, 
Botrytis cinerea, Colletotrichum graminicola, Erwinia amylovora, 
Fusarium oxisporum, Michridichium nivale, Sclerotinea homeocarpa, 
and others with equal importance (Korshunova et al., 2021). However, 
those are strain-based products. Comparatively, there are only a few 
commercial products based on Pseudomonas-derived metabolites, 
despite the large number of natural products isolated from them 
(Jahanshah et al., 2019; Mevers et al., 2019). Also, some Pseudomonas 
strains and other groups prospected for commercial formulations can 
cause opportunistic infections, requiring more sophisticated 
characterizations for safe use (Kumari et al., 2022). In this sense, it is 
essential to demonstrate the bioactivity of the strain’s extracts, as their 
natural products may represent better options to be applied in the field 
than the strains per se. We had previously isolated a bacterial strain 
(So3.2b) from Antarctic soil. We  identified it through complete 
genome analysis as a Pseudomonas specie, with an Average Nucleotide 
Identity (ANI) of 99.33 and 99.07% with the species P. shahriarae and 
P. fluorescens, respectively (Núñez-Montero et  al., 2023). Here, 
we describe the chemical potential of this strain by using OSMAC 
cultivation approaches, metabologenomics analysis, and elucidating 
its bioactivity against five strains of R. solani from different 
plant sources.

2. Materials and methods

2.1. Bacterial culture and metabolites 
extraction

The acquisition of extracts for LC–MS/MS analysis was achieved 
by using a 24-well microbioreactor system (Applikon Biotechnology 
Inc., Nederland). For that, a colony of the bacterial strain was 
inoculated in 1.5 mL of four broth media including M2 (Mannitol 
40.0 g/l, Maltose 40.0 g/l, Yeast extract 10.0 g/l, K2HPO4 2.0 g/l, 
MgSO4·7H2O 0.5 g/l and FeSO4·7H2O 0.01 g/l), IMA (Yeast extract 
4 g/l, Malt extract 10 g/l, Glucose 4 g/l, Mannitol 40 g/l), YES (Sucrose 
150 g/l, Yeast extract 20 g/l, MgSO4·7H2O 0.5 g/l, ZnSO4·7H2O 0.01 g/l 
and CuSO4·5H2O 0.005 g/l) and CGA (Glycerol 30 g/l, Peptone 2 g/l, 
K2HPO4 1 g/l, NaCl 1 g/l, MgSO4·7H2O 0.5 g/l and 5 mL of trace 
solution containing CaCl2·2H2O 3 g/l, MnSO4 0.2 g/l, ZnCl2 0.1 g/l, 
CuSO4·5H2O 0.025 g/l, Na2B4O7·10H2O 0.02 g/l, CoCl2 0.004 g/l and 
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(NH4)6Mo7O24·4H2O 0.01 g/l). Extraction of secondary metabolites 
was performed using ethyl acetate after 7 days of incubation at 15°C 
and 190 rpm. We also obtained extracts from un-inoculated wells for 
each media to be used as blank controls. For this study, a single well 
for treatments and blanks was extracted. Then, to acquire the 
necessary number of extracts for antifungal assays, we performed a 
scaled-up cultivation process. Basically, after three days of incubation 
in TSA medium (16°C), the bacterial strain inoculum was set in 0.85% 
sodium chloride solution to 1×107 CFU (McFarland standard), and 
150 μL were inoculated to Erlenmeyer’s with 150 mL of the same 
culture media described previously and incubated in the same 
conditions. Liquid–liquid extraction was performed with ethyl acetate, 
and the resulting extracts were dried on a rotary evaporator and kept 
under refrigeration until use on bioassays.

2.2. Detection of secondary metabolites by 
LC-QTOF-MS/MS under different culture 
media

An in-situ extraction of each culture was done by adding 2 mL of 
ethyl acetate to each well of the previously grown cultures on the 
microbioreactor system. After incubation for 60 min at 190 rpm at 
room temperature, the organic phase containing secondary 
metabolites was collected, dried under N2 airflow, and resuspended in 
20 μL of methanol to generate the analytes for LC-QTOF-MS/MS and 
to conduct antimicrobial assays. Aliquots of each extract (1 μL) were 
analyzed by LC-QTOF-MS/MS, in a Agilent 1290 Infinity II UHPLC 
coupled to an Agilent 6545 LC/QTOF mass spectrometer with an 
orthogonal electrospray ionization (ESI) interface (Agilent 
Technologies, Waldbronn, Germany); using a Zorbax C8 RRHD 
1.8 μm (2.1 × 50 mm) column, elution gradient of 2.50 min at 
0.417 mL/min from isocratic 90% H2O/MeCN (acetonitrile) to 100% 
MeCN (with isocratic 0.1% formic acid modifier). MS/MS analysis 
was performed on the same instrument for ions detected in the full 
scan at an intensity above 1,000 counts at 10 scans/s, with an isolation 
width of ∼4 m/z using a fixed collision energy of 20 eV and a 
maximum of three selected precursors per cycle. Samples were 
injected (5 μL) using an autosampler refrigerated at 4°C.

2.3. Mass spectrometry data processing 
and analysis

Data were converted from raw to mzXML format with MSConvert 
(Chambers et al., 2012) and uploaded to the GNPS platform (Wang 
et al., 2016) for further analysis. A molecular network was created with 
filtered data (MS2 fragment ions within ±17 Da of the precursor m/z 
were removed). To window filter MS2 spectra, only the top 6 fragment 
ions in the ±50 Da window throughout the range were chosen. The 
precursor ion mass tolerance was set to 0.02 Da, and an MS2 fragment 
ion tolerance of 0.02 Da. The network was created by filtering edges to 
a cosine score above 0.7 and more than six matched peaks, and 
boundaries between two nodes were kept in the network if and only 
if each of the nodes appeared in each other’s respective top 10 most 
similar nodes. The spectra in the network were searched against 
GNPS’ spectral libraries. The library spectra were filtered in the same 
manner as the input data. All matches kept between network spectra 

and library spectra were required to have a score above 0.7 and at least 
six matched peaks. The network can be accessed by the link: https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=879d66d4fb9c44cc83
d9fb4031646223. Results were visualized on Cytoscape software 
(Shannon et  al., 2003). A PCoA plot (based on Bray–Curtis 
dissimilarity metrics) was used to graphically demonstrate the 
distance measure between each of the treatments based on their 
overlapping molecules, and this plot was visualized with the EMPeror 
Qiime2 plugin (Bolyen et al., 2019). To improve the knowledge about 
the chemical potential of our bacterial strain by increasing the 
metabolite annotation rates, we also performed in silico analysis with 
the NAP tool (da Silva et al., 2018) which allowed us to achieve MSI 
level 3 annotations (Sumner et al., 2007). For that, we constructed a 
library with compounds isolated from Pseudomonas spp. retrieved 
from the Natural Products Atlas database (van Santen et al., 2019). 
Then, we performed the analysis considering [M + H]+, [M + Na]+ and 
[M + K]+ as possible adducts for the hits and 15 ppm as a tolerance for 
the accuracy of the exact mass of the candidate structures. The results 
can be accessed by the following link: https://proteomics2.ucsd.edu/
ProteoSAFe/status.jsp?task=92a813db795c433ba7426e63b46b413e.

2.4. Antifungal bioassays

The activity of extracts obtained from the Pseudomonas sp. strain 
cultivated on different culture media was evaluated against Rhizoctonia 
solani strains by the mycelial growth inhibition test (Rios et al., 1988), 
with some modifications. Briefly, after resuspension in sterilized 
dimethyl sulfoxide (DMSO) and distilled water (1:9), the extracts were 
added to autoclaved PDA medium shortly before its solidification and 
gently stirred to assure homogenization and to reach a final 
concentration of 250 μg mL−1 of extracts on medium before pouring it 
into Petri dishes Plugs of 5 mm of radius containing fresh fungal 
mycelium were added to the center of the treatment plates, which were 
incubated at 28°C for as long as necessary for the phytopathogens in 
each negative control plate to take up all available space for growth. As 
a positive control, we  used the Maxim® fungicide, with its active 
ingredients diluted at the same concentration as the extracts, and as a 
negative control, we used the 10% DMSO solution. Each treatment 
was evaluated in triplicates against all the fungi strains. The percentage 
of fungal growth inhibition was measured with ImageJ software, the 
means were calculated and then compared by Tukey test with a script 
in the R language. The phytopathogenic R. solani strains used in this 
study are CMES 1861 (isolated from Glycine max), CMAA 1592 
(isolated from Ocimum basilicum), CMAA 1417 (isolated from 
Cichorium endivia), CMAA 1588 (isolated from Solanum tuberosum) 
and CMAA 1589 (isolated from Origanum vulgare). Those were 
kindly provided by EMBRAPA  - Soybean and 
EMBRAPA - Environment.

2.5. Genomic mining of biosynthetic gene 
cluster and chemical-genomic annotation 
comparison

The complete genome sequence of the Pseudomonas sp. strain 
So3.2b was previously obtained and reported (Núñez-Montero et al., 
2023), which is available at National Center for Biotechnological 
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Information (NCBI) by the accession number CP080494.1. 
Biosynthetic gene clusters were identified through antiSMASH v6.1.1 
(Blin et al., 2021) with “relaxed” detection strictness, for annotation of 
well-defined and low similarity clusters without incurring into false 
positives. Chemically annotated compounds were compared with 
genomic annotations to find similarities. NPA026209 and NPA026208 
annotated as possible bananamides D and F, respectively, showed 
genetic structural similarity to a Non-Ribosomal Peptide Synthases 
(NRPS) cluster in region 7 (Supplementary Table S1). To confirm this 
similarity, protein-coding sequences of the Pseudomonas sp. strain 
So3.2b and biosynthetic gene cluster of bananamides D and F from 
Pseudomonas sp. strain COW3 (GenBank accession: MN480426.1) 
(Omoboye et al., 2019) were obtained (consulted 11/3/2022). Synthetic 
blocks were identified through local colinearity regions using 
progressive mauve alignment tool with Mauve v2.4.0.

2.6. Genomic phylogenetic analysis

A phylogenetic analysis was carried out for a better understanding 
of the evolutionary relationship between So3.2b strain and its 
biosynthetic potential. Phylogenetic distances were determined by 
constructing of core proteome of the available complete representative 
genomes of the NCBI (entered 11/10/2022) for Pseudomonas genus 
(×100) plus the bananamide-producer COW3 strain (total: 102 
genomes, including our Antarctic strain). Core proteome were 
obtained with M1CR0B1AL1Z3R (Avram et  al., 2019)1 using the 
parameters of 0.01 maximum E-value and 80.0% minimum identity 
in all compared genomes. Briefly, the tool extracts all ORFs from all 
genomes using Prodigal, detects homologous genes (all against all) 
using MMSEQS2 and then clusters them using MCL and uses MAFFT 
to reconstruct an amino acid (AA) multiple sequence alignment 
(Avram et  al., 2019). Once aligned, M1CR0B1AL1Z3R reverse 
translates each AA alignment to get the corresponding codon 
alignment. The phylogenetic tree was constructed with this proteome 
alignment using maximum likelihood algorithm with RAxML 
(Stamatakis, 2014). The resulting tree was visualized using iTOl v6.6 
(Letunic and Bork, 2021).

3. Results and discussion

3.1. Chemical analysis and metabolites 
annotation

To study the effect of nutrient sources on the production of 
specialized metabolites by Pseudomonas sp. So3.2b, the strain was 
grown on four nutrient-rich media with different carbon sources to 
stimulate antimicrobial production. OSMAC approaches have 
allowed the discovery of new microbial compounds through easily 
adaptable changes, such as altering the carbon and nitrogen source, 
the concentration of nutrients, pH, or temperature (Li et al., 2013; 
Sha and Meng, 2016; Zhang et al., 2017). It is supposed to mimic 
natural environmental changes and can promote the expression of 

1 https://microbializer.tau.ac.il/

silent biosynthetic gene clusters inducing the microorganism to 
synthesize secondary metabolites with diverse scaffolds (Schwarz 
et al., 2021). Furthermore, alterations in the C/N ratio considerably 
affect the pH of the culture media through the formation of acids and 
organic bases (Pan et al., 2019). In Figure 1, the production of specific 
metabolites in each culture media can be observed, with the IMA 
medium having the highest amount of exclusively detected features 
and IMA and M2 having the most dissimilarity compared to the 
others. In this case, when the culture medium has a mixture of 
rapidly-assimilation and slowly-assimilation carbon sources, the 
former is preferentially used to produce cells and compounds of 
primary metabolism. After this faster assimilation, the second carbon 
source can be  used to create specialized metabolites (Ruiz 
et al., 2010).

It is known that the presence of two or more carbon sources in the 
growing environment has a relevant impact on growth. Regulation of 
the sequential use of carbon sources in microorganisms is governed 
by carbon catabolite repression (CCR) and has a significant effect on 
many other cellular functions. The assembly of regulatory networks 
coordinates the differential expression of genes under limiting and 
non-limiting carbon source conditions. These mechanisms promote 
the use of nutrients that support high growth rates and consequently 
restrict the expression of non-essential genes for growth, avoiding 
high metabolic costs. Although knowledge about CCR is ancient, the 
mechanism for the formation of secondary metabolites in the 
Pseudomonas genus is not yet well established (Shahid et al., 2018; 
Ruiz-Villafán et al., 2022).

Using culture media with different nutrient sources provided the 
synthesis of exclusive compounds in each culture condition in our 
study. Mapping culture media information on molecular networks 
made it easier to visualize these changes (Supplementary Figure S1). 
These approaches combined have already led to the discovery of 
several new microbial compounds (Crüsemann et al., 2017; Zang 
et al., 2020; Han et al., 2022). The molecular network itself presents a 
strategy used mainly in the natural products field, as comparing and 
linking spectra with similar fragmentation patterns make it easier to 
recognize the chemical space that comprehends a set of samples, to 
determine the presence of analogs or new derivatives of known 
compounds and to perform annotation propagation within molecular 
families (Atanasov et al., 2021). The Global Natural Products Social 
(GNPS) molecular networking platform also provides users with a 
spectral library of thousands of compounds, and experimental spectra 
can be automatically searched along the analyses (Wang et al., 2016; 
Aron et al., 2020). However, despite the increasing number of free-to-
access spectral information available, annotating mass spectrometry 
data is still challenging. An excellent strategy to improve annotation 
rates is to use in silico tools and take advantage of structural libraries, 
which are much larger than spectral libraries. Here, we applied the 
NAP tool to promote in silico annotations of our spectral data based 
on a structural library composed only of compounds produced by 
Pseudomonas strains retrieved from the Natural Products Atlas 
platform. The putative annotation for (Z)-4-hydroxy-4-methyl-2-(1-
hexenyl)-2-butenolide is observed only in the CGA medium, besides 
several related compounds were also detected in all the other media 
(Figure 2). In addition, rhamnolipids were also found in all culture 
conditions, but specific features were exclusive to M2 and CGA media. 
The bananamides’ cluster features were mainly detected in the IMA 
media, with bananamide F also found in YES media (Figure 2).
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In this work, the putatively annotated bananamides were 
bananamide D (detected m/z: 1065.670, [M + H]+, molecular formula: 
C53H92N8O14) and F (detected m/z 1039.650, [M + H]+, molecular 

formula C51H90N8O14). The Δm/z: 26.02 Da between those annotations 
is consistent with the observed C2H2 difference on the compounds. 
Bananamides are cyclic lipopeptides (CLPs) commonly found in the 

FIGURE 1

Bray-Curtis-based PCoA highlighting the chemical dissimilarity between extracts of Pseudomonas sp. cultivated on different culture media (A). Venn 
diagram with the total number of features detected on the extracts (B).

FIGURE 2

Molecular families generated by GNPS molecular networking with level 3 annotations (MSI) obtained in the NAP analysis.
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Pseudomonas genus and produced by NRPS biosynthetic gene clusters 
(Nguyen et al., 2016). CLPs are biosurfactants, and their mode of 
action generally consists of the penetration of the plasma membrane, 
creating pores that dysregulate ion fluxes and finally lead to the death 
of the cell (Bender et al., 1999). The first bananamide-like structure 
was isolated and elucidated from Pseudomonas granadensis (Geudens 
and Martins, 2018). Subsequently, another bananamide-type 
compound was isolated and characterized by Nguyen et al. (2016) 
from a strain of Pseudomonas fluorescens isolated from the banana 
rhizoplane. These compounds have great potential for biotechnological 
use as an antibiotic, antifungals, and other antimicrobial activities 
(Cameotra and Makkar, 2004; Geudens and Martins, 2018). Within 
their functionality, antifungal properties have been presented by 
bananamides D-F against phytopathogens Pythium myriotylum and 
Pyricularia oryzae (Omoboye et al., 2019).

We also were able to annotate the (Z)-4-hydroxy-4-methyl-2-(1-
hexenyl)-2-butenolide compound (detected m/z 197.116, [M + H]+, 
molecular formula C11H16O3), which belongs to the butyrolactone 
class. This compound was isolated and characterized from 
Pseudomonas aureofaciens strain 63-28 and had antimicrobial activity 
against Pythium ultimum, Rhizoctonia solani, and Phytophthora 
cryptogea (Pascale et al., 1997). Butyrolactones are not exclusively 
detected on Pseudomonas, being also produced by actinobacteria 
(Franco et al., 1991) and, mainly, by fungi strains (Chen et al., 2015; 
Zhang et  al., 2020; Tilvi et  al., 2022), with several bioactivities 
reported. Due to their antimicrobial potential, synthetically obtained 
butyrolactones have also been designed and have demonstrated 
promising results to be applied as antiviral and antifungal agents in 
agriculture (He et al., 2022; Wu et al., 2022).

Finally, rhamnolipids are widely known biosurfactants, belonging 
to the class of glycolipid biosurfactants, mainly produced by 
Pseudomonas aeruginosa, the first one being reported since the 60s 
(Edwards and Hayashi, 1965). As it has been studied for decades, this 
molecule has several attributed activities, including anticancer 
(Rahimi et al., 2019), antifungal (Vatsa et al., 2010; Carrión et al., 2015; 
Sha and Meng, 2016) and antibiofilm activity (Silva et al., 2017). Due 
to their high biodegradability and non-toxicity, rhamnolipids have 
gained attention in different sectors, especially health and the 
environment (Thakur et al., 2021). Regarding the in silico annotation 
we got rhamnolipid 2 (detected m/z 527.320, [M + Na]+, molecular 
formula C26H48O9), which has shown potential application in soil 
remediation (Kristoffersen et  al., 2018). The other annotated 
rhamnolipid (detected m/z 553.335, [M + Na]+, molecular formula 
C28H50O9), also isolated from an Antarctic Pseudomonas strain, has a 
bactericidal effect against a set of pathogens (Tedesco et al., 2016). In 
a previous study, OSMAC approaches have led to the discovery of 
novel rhamnolipids from another Antarctic Pseudomonas strain 
(Kristoffersen et al., 2018).

It is worth noticing that all the annotated compounds in this work 
are part of molecular families with multiple non-annotated adduct 
ions that represent compounds structurally similar to the 
rhamnolipids, bananamides or the (Z)-4-hydroxy-4-methyl-2-(1-
hexenyl)-2-butenolide. On molecular network analysis, within a 
molecular family with annotations, those unknown features can 
represent different adducts from the same known compounds (in 
positive mode for example, a Δm/z of approximately 23 Da between 
two nodes can be indicative of a [M + Na]+ adduct, while a Δm/z of 
approximately 39 Da can be  indicative of a [M + K]+ adduct) or 

adducts from known compounds for which there are any available 
data on the databases used in the research, but might also characterize 
potentially new analogs for the annotated compounds (easy to 
detected examples are analogs with a methylation difference, Δm/z of 
approximately 14 Da, and an oxygen loss, Δm/z of approximately 
16 Da) (Aron et al., 2020). We should also mention that besides the 
importance and usefulness of the annotation tools to enhance our 
comprehension upon the complex mixtures that characterize natural 
extracts, further isolation and structural elucidation are required for 
identification of metabolites, and bioassays based on pure compounds 
should be performed to confirm their bioactivities. In silico tools, like 
the one we used in this work, are usually more assertive on predicting 
molecular classes than the compounds for a given feature (da Silva 
et al., 2018), and so additional care must be taken by researchers using 
them. In this work, our approach used a database composed only of 
Pseudomonas-derived compounds in order to diminish false 
annotation rates, and we also inspected the predicted peaks to the 
substructures they were assigned for on the annotations. Even so, 
exploratory studies like this undoubtedly can take advantage of using 
such tools to highlight the chemical potential of promising strains 
(Crüsemann et al., 2017; Bauermeister et al., 2018).

3.2. Bioactivities of extracts against 
Rhizoctonia solani strains

The crude extracts obtained from Pseudomonas sp. So3.2b culture 
in four different media was evaluated against five R. solani strains from 
diverse plant sources (Supplementary Figure S2). Most extracts 
inhibited at least one of the tested strains, except for the R. solani strain 
CMAA1592 which was not inhibited by any extract (Table 1). By 
comparing the bioassay results, the M2 culture medium presented the 
broadest potential for producing inhibitory compounds, reducing the 
growth of strains CMAA1417, CMAA1589, and CMAA1588 by 35,17, 
60.45%, and 90,57%, respectively. The extract from IMA medium was 
also bioactive against more than one R. solani strain (CMES1861 - 
67.67%, CMAA1588 - 43.74%). As shown in Figure 1A, those were the 
extracts with higher dissimilarity compared to the others evaluated in 
this work in the Bray-Curtis-based PCoA. Notably, the IMA medium 
produces a greater diversity of compounds, demonstrated through the 
greater amount of unique ions detected (Figure  1B), and was 
responsible for the production of the most bananamide-like molecular 
networks (Figure  2), where most ions were only produced when 
So3.2b was cultivated in this medium. The promising inhibitory effect 
of this crude extract remains expected, considering the well-
demonstrated antifungal activity of bananamides and bananamides-
like molecules from other Pseudomonas sp. strains isolated from plant 
rhizospheres (Omoboye et al., 2019).

On the other hand, some rhamnolipids-related molecules were 
exclusively produced in M2 medium. Since those molecules are 
known to have bioactivity against other microbes, they are likely 
partially responsible for the antifungal activity observed in this work 
and the improved activity compared to other culture mediums, as 
previously studies have stated (Sha and Meng, 2016; Jishma et al., 
2021). Additionally, the presence of rhamnolipids producer strains of 
Pseudomonas sp. in the rhizosphere of agriculturally relevant plants 
and their antifungal properties incur in the idea of a protective role 
against phytopathogens (Jishma et al., 2021). This result confirms the 
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antifungal potential of Antarctic Pseudomonas strain So3.2b and its 
chemical production potential under OSMAC approach. Notably, the 
observed activity was obtained from the crude extract. Then, a 
stronger antifungal activity might be obtained from purified fractions 
of one or more compounds isolated from this strains for 
agricultural management.

As Pseudomonas strains are ubiquitous to various environments, 
they are commonly isolated (Mielko et  al., 2019), and have been 
notably used as biocontrol agents in agriculture (Dimkić et al., 2022; 
Guzmán-Guzmán and Santoyo, 2022), which suggests their chemical 
capacity. There are reports on literature on the potential of their 
metabolites, both volatile and non-volatile, against phytopathogenic 
microorganisms including R. solani (Sasirekha and Srividya, 2016; 
Wang et al., 2021). Phenazines (Shanmugaiah et al., 2010), furanones 
(Paulitz et al., 2000), pyrroles (Howell, 1979; Cartwright et al., 1995), 
and cyclic lipopeptides (Hua and Höfte, 2015; Oni et al., 2020) are 
among the main compounds responsible for the activity related 
specifically against this fungal pathogen. Regarding to the cyclic 
lipopeptides, it is interesting to bring up the results reported by 
Nielsen et al. (2000), who detected and isolated a tensin compound 
from extracts of a P. fluorescens strain and tried to apply an OSMAC 
approach to study tensin production and search for other bioactive 
compounds produced on different culture media. Their study 
demonstrated tensin quantitative variation related to changes on 
nutrients sources but did not detect the production of other bioactive 
compounds in response to those changes. In our study, we report a 
differential production of the annotated bananamides according to the 
culture media used. Siderophores produced by Pseudomonas may also 
be  related to antifungal activity against R. solani (Sasirekha and 
Srividya, 2016). Although we did not annotate any siderophore from 
our extracts through spectral and in silico libraries searches, 
nonetheless a BGC encoding pyoverdine-like compound was detected 
on genome annotation (Table 2).

Microbial prospecting efforts in the Antarctic environment have 
also long led to the isolation of several psychrophilic Pseudomonas 
strains (Witter, 1961), including novel species (Jang et  al., 2020; 
Nováková et al., 2020), and plenty of those have been screened for a 
plethora of applications (Ruan et  al., 2005; Stallwood et  al., 2005; 
Yarzábal et  al., 2018). To the best of our knowledge, no previous 
studies reported antifungal activity from Antarctic-derived 
Pseudomonas against R. solani specifically, but we do have reports on 
antifungal potential of some strains against other phytopathogenic 
fungi (Poblete-Morales et al., 2020). Psychrophilic and psychrotolerant 
bioactive microorganisms are expected to represent good 
opportunities for the development of new biopesticides and 

biofertilizers for agriculture in regions of cold climate conditions 
(Yarzábal et al., 2018; Torracchi et al., 2020). But beyond that, their 
metabolome cannot be unconsidered, as it is widely accepted that they 
represent promising strains for natural products discovery (Núñez-
Montero and Barrientos, 2018), as also revealed by genome analysis 
data (including this work) (Lee et al., 2017; Poblete-Morales et al., 
2020). As demonstrated by our bioassay results, metabolites produced 
by Pseudomonas from Antarctica can lead to phytopathogen control 
even for fungal strains isolated from tropical climates. Also, by using 
the OSMAC approach we  could better understand this strain’s 
bioactivity profile. Considering both bioassay results and 
metabolomics analysis under the extracts, we hypothesize that more 
than one compound or compound class can be  related to the 
antifungal activity reported, depending on the culture medium 
evaluated. Although crude extracts can be  used on exploratory 
research such as this, leading to the assessment of chemical and 
bioactivity profiles of talented microorganisms (Cumsille et al., 2017; 
Bauermeister et al., 2018; Sabido et al., 2021), further approaches such 
as fractionation of extracts and the use of metabolomics tools such as 
Bioactivity-based molecular networks can lead to the detection of the 
compounds responsible for the activity and its isolation (Nothias 
et al., 2018).

3.3. Characterization of identified 
biosynthetic gene clusters

Pseudomonas sp. strain So3.2b has twelve different BGCs in its 
genome principally associated with ribosomally synthesized and post-
translationally modified peptides (RiPP), NRPS, and 
N-acetylglutaminylglutamine amide dipeptide (NAGGN), as well as 
other chemicals compounds like arylpolyene, betalactone, 
butyrolactone, hserlactone and a redox cofactor 
(Supplementary Table S1). Little to no similarity is noted between the 
identified molecules and previously reported clusters. The highest 
similarity percentage is the arylpolyene (35%) to a known APE Vf. 
These results suggest the idea of new molecules in this bacterial strain 
that could be  related to the antifungal activity earlier discussed. 
Certain RiPP, arylpolyene, NRPS, and acyl amino acids have reported 
inhibitory effects against fungi (Table 2), therefore, may be related to 
the bioactivity of the strain.

To relate the genetic biosynthetic content with predicted 
molecules from chemical analysis, we  conducted a comparison 
between each of the BGCs of the Antarctic strain against the gene 
cluster encoding the indicated molecules. No related genes were 

TABLE 1 Inhibition percentage of R. solani strains by extracts of Pseudomonas sp. So3.2b and the commercial fungicide Maxim® (250 μg mL−1).

Treatment R. solani 
CMES1861

R. solani 
CMAA1588

R. solani 
CMAA1589

R. solani 
CMAA1417

R. solani 
CMAA1592

YES – 21.78% ± 1.14 e – – –

CGA – 24.94% ± 0.41 d – – –

M2 – 90.57% ± 0.69 b 60.45% ± 3.5 b 35.17% ± 9.69 b -

IMA 67.67% ± 1.25 b 43.74% ± 1.34 c – – –

Maxim® 100% ± 0.00 a 100% ± 0.00 a 100% ± 0.00 a 100% ± 0.00 a 100% ± 0.00 a

In the same column, values assigned the same letter are not significantly different (p < 0.05) according to Tukey’s test.
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found with the production of rhamnolipids or (Z)-4-hydroxy-4-
methyl-2-(1-hexenyl)-2-butenolide. Nonetheless, the latter is likely 
to be produced by an unknown butyrolactone gene cluster found on 
the genome (BGC region 9, Supplementary Table S1). Meanwhile, 
bananamides D-G of the Pseudomonas sp. COW3 strain (Omoboye 
et al., 2019) showed the most significant similarity with the NRPS 
type gene cluster of region 7, which comprises five biosynthetic genes, 
seven regulatory genes, and 11 transport-related genes. Moreover, 
similar adenylation, condensation, and thiolation domains, 
transcriptional regulator genes, outer membrane lipoprotein genes, 
and efflux proteins of the bananamides-producer cluster are also 
present in So3.2b strain, indicating that this could be the biosynthetic 
cluster responsible for producing bananamide-like compounds 
(Supplementary Table S2; Omoboye et  al., 2019). Bananamides 
compounds were characterized in Pseudomonas fluorescens strain 
BW11P2 (later reclassified as P. bananamidigenes) isolated from 
banana (Musa sp.) rhizosphere in Sri Lanka and named bananamides 
A-C (Nguyen et al., 2016). As our Antarctic strain is close to being 
considered a P. fluorescens strain, regarding average nucleotide 
identity comparison value above the same species indicator (>95%) 
(Núñez-Montero et al., 2023). It is reported that BGCs encoding 
cyclic lipopeptides in Pseudomonas have a significant degree of 
synteny, and the natural products synthesized from them often 
possess a high structural similarity (Christiansen et  al., 2020). 
Therefore, the similarity between the chemically annotated and 
genomic compared molecules was confirmed through alignment of 
local collinear blocks between both COW3, and So3.2b strains 
clusters (Figure 3).

Bananamides D and F were chemically annotated for our 
Antarctic strain, and we confirm their genetic similarity sharing most 
of the biosynthetic genes of COW3 bananamide cluster (Figure 3). 
Hence, our results suggest that bananamide-like compounds are 
probably encoded by the NRPS cluster of region 7 of the Antarctic 
So3.2b strain. The bananamide-like compounds detected in this study 
are likely associated with its bioactive antifungal potential since the 
NRPS genetic cluster responsible for its production also contains 
multiple antibiotic resistance genes (e.g., macrolide resistance macAB), 
an observation in antibiotic producer microorganisms as a mechanism 
to avoid suicide by their own produced molecules (Almabruk et al., 

2018). Even though our results suggest region 7 might be responsible 
for the bananamide-like compound detected in Pseudomonas So3.2b, 
this BGC also contains multiple other biosynthetic genes 
(Supplementary Table S2; Figure  3) that might produce several 
different combinations molecularly and structurally similar to 
bananamides, such as those analogs adduct ions detected on Figure 2 
(Chevrette et al., 2020).

Nonetheless, Antarctic Pseudomonas sp. So3.2b additionally has 
six BGCs associated with molecules of previously reported 
antimicrobial properties with low or no similarity to known 
molecules (highest similarity 35% of region 3 to an APE Vf, 
arylpolyene). Then, genomic and metabolomic pieces of evidence 
suggest that the Antarctic Pseudomonas So3.2b is a good source 
microorganism for the biodiscovery of novel antifungal products in 
the light of the non-traditional environmental isolation 
bioprospecting (Sekurova et al., 2019; Matos De Opitz and Sass, 
2020). A similar approach to the one we used in this work was 
applied by Wang et  al. (2020) to detect antifungal compounds 
produced by P. aeruginosa, where they compared metabolomics and 
genomics data of a bioactive (isolated from housefly gut) and an 
inactive strain (isolated from a wastewater treatment plant). Other 
similar approaches have been proposed to other Antarctic 
microorganisms of the proteobacteria phylum for natural product 
discovery (Núñez-Montero et al., 2020, 2022), and for several other 
bacteria from diverse environments (Maansson et al., 2016; Paulus 
et  al., 2017; Tareen et  al., 2022). Metabologenomics have been 
applied to fungi at a lower scale as the presence of introns in their 
genome makes gene prediction even more complex, but successful 
examples are available in literature (Gonçalves et al., 2022; Hebra 
et  al., 2022), and some tools are being developed to facilitate 
metabologenomics analysis of data from fungi strains (Caesar et al., 
2023). It demonstrates the understanding consensus of the scientific 
community that linking metabolome and genome information can 
indeed accelerate natural products discovery. This approach has 
also been eased by the lowering costs of genome sequencing and 
mass spectrometry analysis on recent years (Van Der Hooft et al., 
2020) and by the development of several tools that aim to automate 
the integration of both data types (Soldatou et al., 2019), besides 
manual correlation is still largely used (Van Der Hooft et al., 2020).

TABLE 2 Biosynthetic gene cluster of Pseudomonas sp. So3.2b annotated by antiSMASH with previously reported antifungal activity.

Region Type Most similar 
known cluster

Similarity (%) From To Reference to 
previous 
antifungal 
activity report

1 RiPP-like – – 174,367 184,064 Saravanan et al. (2021)

2 NRPS-like Nematophin 12 374,268 403,055 Zhang et al. (2019)

3 Arylpolyene APE Vf 35 677,437 721,011 Abdel-Mageed et al. 

(2020)

4 RiPP-like – – 1,619,296 1,630,177 Saravanan et al. (2021)

6 NRPS Pyoverdin 17 2,353,769 2,406,285 Dutta et al. (2020) and 

Zhao et al. (2021)

7 NRPS Pyoverdin 20 2,455,913 2,549,388 Dutta et al. (2020) and 

Zhao et al. (2021)

10 Acyl amino acids A33853 8 3,554,000 3,614,929 Wang et al. (2022)

RiPP, Ribosomally synthesized and Post-translationally modified Peptide; NRPS, Non-Ribosomal Peptide Synthetase; -, Non found.
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3.4. Phylogenetic analysis

A phylogenic analysis based on the core proteome was carried out 
using the complete genomes of the Pseudomonas genus. The resulting 
tree showed the greatest vicinity with P. shahriarae (putative 
P. fluorescens), P. yamanorum and P. veronii, all isolated from 
agricultural soil samples (Supplementary Figure S3). Our Antarctic 
strain is distant from the bananamides-producer P. botevensis COW3, 
therefore in their evolutionary history, othertraits, related to 
environmental adaptation might conferred a considerable 
phylogenetic distance in spite of sharing similar bananamides D and 
F biosynthetic clusters. Hence, it is likely that this similar biosynthetic 
pathways were independently acquired/evolved for each species. Also, 
this similar BGCs might be more related to an acquired characteristic 
to cope with specific environment than a vertical genetic evolution 
[such as for some core secondary metabolism (Chevrette et al., 2020)]. 
The Antarctic environment where strain So3.2b was isolated is 
considered poly-extreme due to the cold weather, dry conditions, and 
high contamination regarding agrochemical pollutants, heavy metals, 
and antibiotics possibly transported by anthropogenic activities, water, 
air or volcanoes eruptions (Zreda-Gostynska et al., 1997; Bhardwaj 
et al., 2018; Chu et al., 2019; Vergara et al., 2019; Hwengwere et al., 
2022). Also, studies have shown that non-indigenous bacteria 
introduced in the Antarctic continent led to an increase in genetic 
diversity, including antibiotic resistance genes, intensifying the 
evolutionary and selective pressure toward survival adaptations 
(Cowan et al., 2011; Hwengwere et al., 2022). These conditions restrict 
the survival and growth of microorganisms and confers the selective 
environmental pressure that affects gene flow mechanisms related to 
evolution, such as horizontal gene transfer events (HGT), leading to 
similar biosynthetic gene clusters independently evolved, including 
NRPS clusters (Chevrette et al., 2020).

The secondary metabolism developing through the recycling and 
repurposing of previous existing biosynthetic machinery– mediated 
by evolutive events such as horizontal gene transfer, or duplication is 
solid in antimicrobial compounds where an intense selective pressure 
is present (Chevrette et  al., 2020). These ideas correlate with our 
results, where bananamide-like compounds were detected but showed 

substantial genetic differences on the known clusters responsible for 
their production, including multiple additional regulations, transport, 
and biosynthetic genes in the Antarctic Pseudomonas So3.2b 
(Figure  3). Additionally, genetic clusters tend to recruit genetic 
elements from phylogenetically distant clusters due to their wide range 
of substrates, positively affecting the selective pressure (Medema et al., 
2014). Therefore, we propose our Antarctic strain could have evolved 
the bananamides-producer cluster independently through evolution 
events pressured by the poly-extreme environmental conditions of 
Antarctica. This explains the considerable phylogenetic distance 
between the bananamide producer COW3 and our So3.2b strains, 
regardless of the presence and synthesis of similar bananamides 
compounds with considerable BGCs differences.

4. Conclusion

Here we  show genomic and metabolomic evidence about the 
potential of Pseudomonas sp. strain So3.2b metabolites for controlling 
R. solani strains from different crops. Thus, Antarctic microorganisms 
can be considered sources of bioactive compounds for agriculture in 
tropical and subtropical locations. In our chemical analysis, 
we highlight the detection of diverse chemical classes in bacterial 
extracts. We also detected spectral features to which no annotations 
could be designated, even for some of those found within molecular 
families with putatively identified compounds, which can 
be considered an indicator of chemical novelty. Our Antarctic strain 
also presented a wide variety of biosynthetic gene clusters with little 
to no similarity with known molecules, most with previously reported 
antimicrobial activity. Within these, region 7 encoding a NRPS is 
considered similar to the chemically annotated banamides-like 
molecules but containing multiple other biosynthetic genes. The 
phylogenetic analysis showed a great distance between the first 
bananamides D and F producer strain and our Antarctic strain, 
suggesting an independent evolution or acquisition of this BGC, 
which might be related to its response to the extreme environmental 
conditions from Antarctica. Therefore, both genomics and 
metabolomics analyses support that this Antarctic strain is a 

FIGURE 3

Syntenic comparison by alignment and identification of local collinearity blocks (LCBs) between the biosynthetic gene clusters from bananamide DF of 
Pseudomonas sp. COW3 (accession MN480426.1) and homologous regions of Non-Ribosomal Peptide Synthases (NRPS) cluster in the region 7 of the 
Antarctic Pseudomonas sp. So3.2b. Gene graphics represent each cluster with homologous LCBs color matching. Similar plots for LBCs are shown on 
the top of genes graphics. Homologous genes are labeled with its annotation description, additional biosynthetic genes are pointed by arrows and 
other genes are presented as white boxes.
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promising source for exploring bioactive compounds and application 
of these against phytopathogenic fungi. Our results also emphasize the 
importance of culture media variation in screening studies for natural 
product discovery (e.g., OSMAC approach).
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