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Av. Libertador Bernardo O’Higgins 611, Rancagua, Chile
(Dated: May 4, 2023)

Consider a cylindrical bottle of radius r2, height h, and mass mb partially filled with a mass ml of liquid of density
ρ. The bottle is set in rotation at angular velocity ω = 2πΩ before its release, so the liquid inside also rotates steadily
(Ω is the rotational frequency). After release, the cylinder falls freely under the acceleration gravity, reaching a solid
flat surface at t = 0 with velocity −v. Before the collision, we assume that the liquid inside the container has reached
its new steady state, i.e. the centrifugal force has pushed away all the liquid onto the walls, forming a cylindrical
shell of height h (the full extent of the bottle), outer radius r2 and inner radius r1. The elastic hemisphere attached
to the cylinder bottom has a radius R. The equation of motion for the cylinder is

mbz̈ = −mbg + Fe − Fd − Fl, (1)

where Fe is the elastic force due to the compression of the hemisphere, Fd = γż|z|Θ(−z) is a nonlinear damping
force due to dissipative processes during contact and deformation of the hemisphere [1], and Fl is an interaction force
between the liquid and the container. We consider a contact force law between the elastic hemisphere and the impact
surface given by

Fe =
4

3

E

1− ν2
R1/2 |z|2 Θ(−z) , (2)

where E is the elastic modulus, ν the Poisson ratio, and Θ is the Heaviside function, which accounts for situations
when the hemisphere is not in contact with the solid ground.

A SIMPLIFIED MODEL FOR THE ELASTIC COLLISION

Let us assume that after the collision, a portion of the shell of water with mass ρπ
(
r22 − r21

)
v−∆t, which is on the

wall, is focused after the collision into a section of a jet of radius rj upward velocity vj and constant angular velocity
ωj . Mass conservation law during the collision leads to

r2j (vj − ż)−
(
r22 − r21

)
(v− + ż) = 0. (3)

Likewise, the conservation of angular momentum implies that

ωjr
4
j (vj − ż)− ω

(
r42 − r41

)
(v− + ż) = 0. (4)

The change of momentum due to the action of the force exerted on the container Fl yields

Fl =
∆p

∆t
= ρπ

[
r2j (vj − ż) vj +

(
r22 − r21

)
(v− + ż) v−

]
. (5)

Energy conservation under the action of the force Fl acting on the bottom of the bottle, which travels at speed ż,
requires that the power exerted on the fluid equals the rate of change of total kinetic energy of the hitting fluid and
the emerging jet. This can be written as

Fl · ż =
1

2
ρπ

{
r2j

(
v2j +

1

2
ω2
j r

2
j

)
(vj − ż)−

(
r22 − r21

) [
v2− +

1

2
ω2

(
r22 + r21

)]
(v− + ż)

}
. (6)
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The system of equations (3), (4), (5), and (6) allows obtaining rj , vj , ωj , and Fl in terms of ż and the parameters
of the system ρ, r1, r2, v−, and ω. From equations (3) and (4), we can obtain the following dimensionless coefficients,

α± ≡ r22 ± r21
r2j

, β ≡ α+

α−
=

2

ϕ
− 1, ϕ ≡ 1− r21

r22
,

where we have introduced ϕ as the fraction of volume occupied by the fluid. From these expressions, we note that

vj − ż

v− + ż
= α−,

vj
v−

= α− + (1 + α−)
ż

v−
,

ωj

ω
= α+.

Dividing equation (6) by (5) to eliminate Fl, one obtains(
1− α2

−
)(

1 +
ż

v−

)2

= ξ (βα− − 1) , (7)

where we have defined ξ ≡ Er/Et as the ratio between the rotational and translational kinetic energies before impact,
with Er ≡ πρω2

(
r42 − r41

)
/4 and Et ≡ πρv2−

(
r22 − r21

)
/2, which corresponds to the rotational and translational

energy, respectively. Equation (7) leads to

α− = −1

2
ϵβ +

√(
1

2
ϵβ

)2

+ ϵ+ 1, (8)

where ϵ ≡ ξ (1 + ż/v−)
−2

. Thus, the force in Eq. (5) is

Fl = πρ
(
r22 − r21

)
v2−


√√√√(

1

ϕ
ξ

)2
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v−

)2

+
1

2
ξ

]2

− ξ

ϕ
+

(
1 +

ż

v−

)2

+
ξ

2

Θ(v−t+ h− z) , (9)

where the Heaviside step function considers the constraint that the force Fl can be only exerted by the remaining
liquid available on the wall.

DIMENSIONLESS FORMULATION

To understand the role of each parameter of the model and reduce the total number of parameters, it is convenient
to write the equation of motion in dimensionless form. Setting the following scaling laws: z ∼ h, t ∼ h/v−, and
consistently, ż ∼ v−, z̈ ∼ v2−/h; plus Fe ∼ (4/3)R3E/(1− ν2), Fd ∼ γ, and Fl ∼ πρr22v

2
−; Eq. (1) can be written as

¨̄z = −Πg +Πefe(z̄)−Πdfd(z̄, ˙̄z)−Πlfl(z̄, ,˙̄z), (10)

where

Πg ≡ gh

v2−
, Πe ≡

4

3

(
1

1− ν2

)(
h

R

)5/2
R3E

mbv2−
, Πd ≡ γh

mbv2−
, Πl ≡

ρVb

mb
, ΠΩ ≡ ω2r22

v2−
.

Parameter ξ in terms of the dimensionless parameters is ξ = ΠΩ (1− ϕ/2) , and the dimensionless forces are

fe (z̄) ≡ |z̄|2 Θ(−z̄) , (11)

fd (z̄, ˙̄z) ≡ ˙̄z |z̄|Θ(−z̄) , (12)

fl (z̄, ˙̄z) ≡ ϕ

√(
ξ

ϕ

)2

(1− ϕ) +

(
[1 + ˙̄z]

2
+

ξ

2

)2

−
(
ξ

ϕ

)
+

(
[1 + ˙̄z]

2
+

ξ

2

)Θ(1− z̄ − t̄) (13)

with z̄ and t̄ the dimensionless z-coordinate and time, respectively.
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