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Hepatitis B has become one of the major global health threats, especially in

developing countries and regions. Hepatitis B virus infection greatly increases the

risk for liver diseases such as cirrhosis and cancer. However, treatment for

hepatitis B is limited when considering the huge base of infected people. The

immune response against hepatitis B is mediated mainly by CD8+ T cells, which

are key to fighting invading viruses, while regulatory T cells prevent overreaction

of the immune response process. Additionally, follicular T helper cells play a key

role in B-cell activation, proliferation, differentiation, and formation of germinal

centers. The pathogenic process of hepatitis B virus is generally the result of a

disorder or dysfunction of the immune system. Therefore, we present in this

review the critical functions and related biological processes of regulatory T cells

and follicular T helper cells during HBV infection.
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1 Introduction

Hepatitis B, resulting from hepatitis B virus (HBV) infection, is one of the leading

health challenges worldwide (1). Globally, it is estimated that 248 million people are

chronically infected out of a total of about 2 billion people with hepatitis B, which means

that about 20% of them will die from cirrhosis or secondary liver cancer (2). It is

noteworthy that hepatitis B transmission in developing countries has shown moderate
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or high prevalence levels in the past few years (3), revealing a need

to enhance our concern about this vital health issue.

HBV is a DNA virus that has an envelope with receptors specific

for infecting hepatocytes (4). In 1965, Blumberg et al. first identified

HBV antigens in Australian Aborigines by antigen testing and, thus,

named them the “Australian Antigen” (5). In 1970, viral particles

were first observed by electron microscopy by Dane et al. and three

types of HBV particles were detected in patient sera (6).

The immune system is crucial during HBV infection. The

pathogenesis of the associated liver disease depends on the

dynamic balance between viral replication versus the host’s

immune response (7). T lymphocytes are the most critical and

dominant immune cells involved in fighting viral infections.

However, the cytotoxic functions of CD8+T cells that eliminate

HBV is also associated with hepatocyte damage (8). Additionally,

CD4+ T cells activate and maintain CD8+ T cell responses and

promote HBV-specific humoral immune responses (9).

Regulatory T (Treg) cells are capable of inhibiting excessive

immune responses induced by effector T cells, including CD8+ and

CD4+ T cells (10). Several studies have shown that Treg cells

proliferate dramatically during chronic HBV infection and

suppress the anti-HBV immune response (11, 12). It is assumed

that Treg induction is initiated by HBV infected hepatic stellate cells

(HSC) that produce TGF-b, which promotes the differentiation of

Treg cells (13).

Follicular T helper (Tfh) cells are a subpopulation of CD4+ T

lymphocytes that regulates the adaptive humoral immunity by

promoting B lymphocytes to produce antibodies (14). A number

of studies have shown that patients with chronic HBV infection

have specific antiviral B cell defects (15–17). Furthermore, follicular

T helper cells have the potential to promote plasma cytogenesis as

well as HBs antigen-specific B-cell responses (17).

This review focuses on the series of immune processes activated

by HBV invasion of hepatocytes, giving a detailed look at the

mechanisms of Treg and Tfh cells. Additionally, we also describe

the potential treatment options for hepatitis B based on these

physiological mechanisms.
2 HBV infection

One HBV particle consists of an envelope of three related

surface proteins and lipids plus an icosahedral nucleocapsid of

approximately 30 nm in diameter (18). An HBV virus typically

encodes several specific proteins that regulate biological processes

within the infected cell, ensuring its ability to proliferate. The HBV

genome formed by incomplete double-stranded circular DNA

contains four overlapping open reading frames (ORF) that make

up the genes- S, C, P, and X (19). The S gene encodes the viral

envelope protein (surface antigen protein, HBsAgs) while the C

gene encodes the core protein (21 k-Da) and pre-core (25 k-Da)

protein (HBcAgs) (20). Viral DNA polymerase is a reverse

transcriptase and is encoded by the P gene (HBpAgs) (21). The X

gene encodes the most vital X protein (HBxAgs) that is involved in

cell signaling, transcription and calcium signaling pathways, which
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affects a range of cellular activities such as apoptosis or

proliferation (22).

HBx has been reported to promote viral replication by

regulating the proliferation process of hepatocytes (22–25).

Gearhart et al. first showed this in rat hepatocytes, whereby HBx

was capable of inducing normal hepatocytes to reach the G1 phase

of the cell cycle (22). There are evidence that HBx mediates

hepatocarcinogenesis by affecting cellular signaling pathways.

Accordingly, Chin et al. showed this by delivering a replication-

competent HBV system into Huh7 and primary marmoset

hepatocytes utilizing a recombinant adenovirus system, which

activated MAPK/Akt pathways that resulted in uncontrolled cell

cycle progression (26). Moreover, Kim et al. first reported that HBx

promotes actin polymerization to enhance metastasis of

hepatocellular carcinoma cells by interacting with calmodulin

(CaM) to regulate the level of cofilin, an actin depolymerizing

factor (27). In tumor cells from patients suffering HBV-induced

liver cancer, Wang et al. detected upregulated levels of Sirtuin1, a

crucial regulator of various signaling pathways (28). More studies

have also pointed out that HBx, acting as a trans-activator, can also

activate signaling pathways such as NFAT, CREB/ATF, Wnt/b-
catenin and nuclear factor-kB (29–33).
3 Immunopathogenesis by HBV
infection

3.1 Antigen-driven humoral immunity

Despite the general consensus that in HBV infection the T-cell

immune response predominates, a growing number of studies are

increasingly recognizing the role of B cells and antibody responses.

Overall, B cells are not directly involved in virus clearance, but

rather secreted antibodies bind to specific HBV proteins and mark

the virus for removal (34).

There are two critical viral antigens. One is a 21 kDa protein

which forms a dimer and assembles into a multimeric shell called

the core-antigen (HBcAg), while the other is a 17 kDa protein called

the e-antigen (HBeAg), which also forms a dimer but does not

assemble into a structure (35). Both are variants of the same protein

presenting two clinically essential and non-cross-reactive antigens,

with HBcAg emerging in the pre-infection period in the form of

particles that assemble the capsid as well as HBeAg in the non-

particulate form (36). Currently, HBsAg is utilized as a protective

antigen in vaccines, while the role of HBcAg and HBeAg is mainly

diagnostic and to assess the course of the disease (37).

Deficiency in specific B-cells has been reported during chronic

hepatitis B infection (15), affecting HBsAg-specific and HBcAg-

specific B cells differently. Interestingly, Le Burt et al. utilized a

fluorescent dye coupled to HBcAg for direct detection of isolated

HBcAg-specific B cells from HB patients. This approach revealed

that the HBcAg-specific B cells appeared more frequently than the

HBsAg-specific, and were capable of secreting antibodies more

potently in vitro (38). Corresponding to this defect in HBsAg-

specific Ab secretion is suppressed activation of memory B cells
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(atMBC). Burton et al. found that chronic HB infection is enriched

in atMBC and expresses various inhibitory receptors like PD-1 and

FcRL5, thereby reducing the potential for differentiation into

plasma cells (15).

In addition, the initiation of humoral immune responses in the

liver is also closely linked to IL-21 secretion by Tfh cells, which will

be explained further in subsequent sections.
3.2 T cell depletion

T cells serve a vital role in the immune clearance of antiviral

responses, participating and coordinatingmultiple aspects of the body’s

adaptive immunity. T cells mature from bone marrow progenitors that

subsequently migrate to the thymus where they are negatively or

positively selected for reactivity to specific markers prior to being

exported to the periphery. Immature T cell populations in the thymus

are classified by surface CD4 and CD8 receptors in the following stages:

double negative (CD4-CD8-), double positive (CD4+CD8+) and single

positive (CD4+CD8- or CD4-CD8+) (39). After binding selectively

with the self-MHC and less intensely to self-peptides, the cells avoid

programmed death and emerge as naïve CD8+ or CD4+ T cells (40).

Peripheral T cells are comprised of several subsets, including naïve T

cells stimulated by new antigens and memory T cells activated from

previous antigens, as well as Treg cells that control excessive

autoimmunity (41).

CD4+ T lymphocytes typically undergo differentiation into

various subpopulations to aid in virus elimination upon infection.

Naïve CD4+ T cells specifically identify complexes of MHC class II

molecules and antigens presented by activated antigen-presenting

cells (APC). In particular, activated APCs triggered by pattern

recognition receptors (PRR) upregulate MHC II, co-stimulatory

molecules (e.g.CD80, CD86) and pro-inflammatory factors (e.g.

IFN I, TNF, IL-1, IL-6 and IL-12), which is followed by migration to

the local lymph nodes for interaction and activation of virus-specific

CD4+ T cells (42, 43). Antiviral CD4+ T cells mainly present with a

Th1-phenotype and secrete large amounts of IFN-g, TNF-a, IL-2
and express T-bet under the induction of IL-12 and IFN-g. The
antiviral effect of IFN-g and TNF-a is based on phagocytosis of

infected cells by macrophages, which are destroyed in endosomal

compartments by nitric oxide (43–45). In addition, Th2 (IL-4

releasing) cells assist humoral immunity and suppress Th1

responses, while Th17 cells (IL-17 releasing) drive inflammatory

responses to recruit neutrophils during viral infection (46–48).

Further, CD4+ T cells also aid and sustain the functions of CD8+

T cells, possibly through CD40L-CD40 interactions that activate

APCs (e.g. type 1 dendritic cells) including cytokines-release (e.g.IL-

12 and IL-15) and co-stimulation, which drives the differentiation

of CD8+ T cells to CTLs (49–52). Chronic HBV infection leads to

depletion of Th1 cells, which is possibly attributed to the observed

CD4+ T cell exhaustion. Also, several studies point to reduced

secretion of Th1-related cytokines by CD4+ T cells as potentially

contributing to Th1 cell depletion (45, 53–55). Additionally, some

studies suggest that the upregulation of the Th2 cell ratio may

further enhance Th1 cell depletion (45, 56–58), as HBeAg induces
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Th2 cell generation. CD4+ Treg cells drive T-cell depletion, which is

also significant and will be discussed later.

It has been demonstrated that CD8+ T cells are the main

effector cells associated with eliminating viruses and causing

disease. The viral elimination is achieved through cytolysis of

infected hepatocytes and a non-cytolytic process that involves the

secretion IFN-g and TNF- a (59). Robert et al. found dramatic

depletion of CD8+ T cells, while essentially no change in CD4+ T

cells during acute HBV infection in chimpanzees (60). Cell

depletion in chronic viral infections is associated with high

expression of co-suppressor molecules (61–63), such as CTLA-4/

CD80(or CD-86) and PD-1/PD-1L. The high expression of co-

inhibitory molecules in T cell exhaustion, such as PD-1, may cause

T cell depletion by inhibiting glycolysis and glutamine activity while

reducing the expression of mTOR-mediated GLUT1 and glutamine

transporter proteins, thus promoting cellular reprogramming to

shift fuel from glucose to fatty acids, which results in excessive

accumulation of ROS due to increased b-oxidation, thereby

damaging mitochondria and invoking apoptosis (64–69). Yan

et al. recently identified a significant contribution by CCL19 in

revitalizing CD8+ T cells in HBV infection. They found that

CCL19-mediated interactions between CCR7 and PI3K/Akt

promote cell proliferation (70). Kathrin et al. have currently

proposed that the HBV-specific CTL marker, Thymocyte

Selection-Associated High Mobility Group Box (TOX), can

identify distinct subsets during chronic infection, such as higher

TOX expression in HBVcore18-specific T cells and lower TOX

expression in HBVpol455-specific and exhausted T cells (71).

Major effects and mechanisms of various T-cell subsets during

HBV infection are shown in Table 1.
4 Regulatory T Cell in hbv infection

4.1 Origin and classification

In general, Treg cells refer to phenotype-specific CD4+CD25

+Foxp3+ T cells, which play key roles in immune tolerance and

autoimmune diseases, as well as tumorigenesis. Treg cells have two

origins; natural regulatory T cells (nTreg), that develop directly from

thymocytes and inducible regulatory T cells (iTreg), derived from

peripheral mature T cells. It has been found that the formation process

of nTregs can be divided into two steps (76). Initially, CD4 single-

positive T cells upregulate the expression of IL-2 receptor (i.e.CD25)

and TNF receptors (i.e. GITR, OX40 and TNFR2) and with TCR

stimulation, differentiate into CD25+Foxp3- Treg progenitor cells.

Next, upregulation of Foxp3 expression leads to the transformation

of progenitor cells into mature nTreg cells (77). The study by Rafal et al.

focusing on Foxp3+CD4+CD25+ thymocytes versus CD4+ naïve T

cells in TCR-transgenic mice, demonstrated a more significant TCR

diversity in the former, indicating that more diverse TCRs on Treg can

match the specificity of naive CD4+ T cells to self and foreign antigens,

contributing to the regulatory role of Treg (78). Foxp3+ iTreg cells

differentiate under more diverse conditions, possibly in the lamina

propria of the gut in response to microbiota and food antigens, as well
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as in chronically inflamed tissues, or in tumors and transplanted

allogeneic organs (79–83). For iTreg differentiation, it was

demonstrated in mice and humans, that naïve and memory T cells

can transform into iTreg cells under TGF-b stimulation (83–85). In

summary, nTreg cells prevent or regulate excessive autoimmunity,

while iTreg cells primarily suppress the immune response to external

antigenic stimuli or inflammatory autoimmune reactions.
4.2 Molecular mechanism

Treg cells have numerous surface marker molecules, including

CD25, CD62L, CD103, CTLA-4, and GITR. CD25 is a characteristic

surface molecule of Treg cells and has a significantly high

expression in nTreg cells (86). Interleukin 2 (IL-2) was first

considered to be an integral T-cell activator, yet, researchers

found that mice lacking IL-2 or its receptor gene exhibited severe

autoimmune symptoms instead of the expected immunodeficiency

(87, 88). Subsequently, Sharfe et al. found that patients with

mutations in the IL-2 receptor alpha chain (i.e. CD25) had

invading lymphatic tissue extensively in the lung, liver, gut, and

bone, exhibiting an uncontrolled autoimmune attack (89). IL-2

signaling has been found to have a direct effect on Treg cells. The

IL-2 receptor (IL-2R) has a low-affinity dimeric form consisting of

CD122(IL-2Rb) and cytokine receptor gamma chains (gc or

CD132) as well as a high-affinity trimeric form with the addition

of CD25 (IL-2Ra) to the dimeric form (90). CD25 in the trimer is

not directly involved in signaling, but rather boosts the affinity of
Frontiers in Immunology 04
the IL-2R for the ligand by 10-100 fold (90). For binding to the

trimeric form, IL-2 first interacts with CD25, which induces a

conformational change in IL-2 that greatly increases its binding

affinity to CD122 and gc, then following the binding of IL-2 to the

trimeric form of IL-2R, the signaling motifs in the cytoplasmic tail

of CD122 and gc mediate signaling pathways such as JAK-STAT,

PI3K-AKT and MAPK (87). Sophie et al. suggested an endogenous

mechanism for regulating IL-2 signaling, whereby Arg35 of CD25 at

the IL-2 binding site is catalyzed by ARTC2.2 for ADP-ribosylation.

In an inflammatory environment, damaged cells release NAD+,

which promotes ADP-ribosylation of CD25, so that IL-2 tends to

bind to the low-affinity receptor CD122/132 on NK cells and CD8+

T cells to drive cell proliferation. In contrast, in a non-inflammatory

environment, IL-2 tends to bind to high-affinity receptor CD25 on

Tregs, thereby depleting IL-2 and exerting immunomodulatory

effects (91).

It has also been suggested that the suppressive effect of nTreg on

CD4+ T cells or CD8+ T cells in vitro is dependent on cell contact,

not cytokines (92). CTLA-4 is a co-repressor molecule that mediates

the regulatory mechanism in Treg cells. Indeed, CTLA-4-deficient

mice and humans both have intense autoimmunity (93–96). Several

potential regulatory processes exist for the inhibition of T cells by

CTLA-4, with a number of mechanisms based on the interaction

between CTLA-4 on Tregs with CD80/CD86 on antigen-presenting

cells (APCs). One possibility is that Treg-expressed CTLA-4

depletes CD80/CD86 on APCs via inducing endocytosis. This

competitive depletion of ligands prevents CD28 co-stimulation

with effector T cells, thereby inhibiting T-cell activation (97–100).
TABLE 1 General changes and mechanisms major T-cell subsets during HBV infection.

T-cell
Subset

HBV-Infection
stage Change Mechanism

Th1

Acute ↑
CD4+ T cells recognize MHC II molecular complexes and APC-presented antigens and are then activated and secrete
large amounts of IFN-g, TNF-a and IL-2 (42, 43).

Chronic ↓
1.Decreased secretion of Th1-related cytokines (45, 53–55);
2.HBeAg induces Th2 cell formation and thus indirectly suppresses Th1 formation (45, 53–55);
3. Inhibition due to Treg overproliferation (based on PD1 signaling, CTLA4 signaling and cell contact, etc.) (72)

Th2

Acute ↑ Th2 releases IL-4, which assists humoral immunity and suppresses Th1 responses (46–48).

Chronic
↑(Th2/
Th1↑)

HBeAg induces Th2 cell formation; (45, 56–58)

Th17

Acute
Th17/
Treg↑

Th17 secretes IL-17/22/23 to recruit neutrophils to promote inflammation (73–75).

Chronic
Th17/
Treg↓

Significant proliferative and anti-inflammatory effects of Tregs.

Treg
Acute

↓ Inhibition by pro-inflammatory factors

↑ Inflammatory transformation (IL-17A+ Foxp3+ Treg↑)

Chronic ↑ Shown in Table 2

Tfh
Acute ↑ To drive anti-virus humoral immunity

Chronic ↓ Shown in Table 3

CD8+T
Acute ↑ CD4+ T cells drive CTLs activation which are the main effector cells for virus elimination

Chronic ↓ High expression of co-repressed molecules (i.e.PD-1/PD-1L and CTLA-1/CD80 or CD86) (61–63)
The symbol "↑" indicates active differentiation of this cell subset or an increase in the ratio between subsets, while "↓" indicates inhibited differentiation of this cell subsets or a decrease in the ratio
between subsets.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1169601
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2023.1169601
This hypothesis is based on the fact that CTLA-4, unlike the surface

receptor CD28, is highly endocytic and occurs predominantly in

intracellular vesicles, while undergoing little conformational change

upon binding to ligands (101). Tai et al. utilized confocal

microscopy to examine the intracellular localization of the

transgenic CTLA-4 protein in conventional T cells and Tregs, and

found abundant Golgi retention in conventional T cells, which was

probably due to the lack of high-affinity TCR interactions, while

Tregs showed intravesicular distribution close to the plasma

membrane (102). It has also been suggested that the interaction

of CTLA-4 with CD80/CD86 of APCs (DCs, for example) induces

indoleamine 2,3-dioxygenase (IDO), which is responsible for

tryptophan metabolism in APCs, in parallel with the inhibition of

kynurenine production, thus promoting APC-apoptosis (103, 104).

A more recent study showed that in vitro blockade of CD80 by

soluble CTLA-4 increased free PD-L1 release on splenic DCs. This

is based on the formation of cis-CD80/PD-L1 dimers on DCs, and

the soluble CTLA-4 disrupts the original heterodimer by promoting

CD80 homodimerization, ultimately releasing free PD-L1 and

upregulating the intensity of PD-1 inhibition (72). In conclusion,

the specific mechanism of CTLA-4 involved in Treg cell

suppression needs to be further investigated and validated,

although it has been shown that CD80/CD86 could be targets of

CTLA-4.

It is essential to reduce Treg responses if an effective immune

response is needed. Toll-like receptors (TLR) have been reported to

modulate the inhibition of Tregs. A study by Li et al. demonstrated

that TLR8 signaling inhibits normal metabolism in human Treg

cells, including inhibition of key glycolytic enzymes and also

inhibition of glucose uptake through downregulation of glucose

transporter protein (GLUT) 1 and GLUT3 (105). Another possible

mechanism is APC-mediated, with either lipopolysaccharide (LPS)-

TLR4 binding or CpG dinucleotide-TLR9 binding, which activates

APC production of IL-6 or GITR ligands, that in turn causes

effector T cells to express IL-6 receptors and GITR, potentially

making them insensitive to Tregs (106–108).
4.3 Role in HBV infection

Tregs cells suppress the antiviral T cell response to acute or

chronic infections, potentially leading to viral persistence or

prevention of autoimmunity (109). In chronic HBV infection,

patients have a weak immune response to HBV, a fact that Jeroen

et al. suggested could be attributed to an increased ratio of Tregs in

the peripheral blood, resulting in diminished antiviral effect (110).

Th17 cells are a subset of CD4+ T cells that secrete IL-17 and are

derived from the same naïve cells as Treg cells, but secreting

proinflammatory factors that are closely associated with

inflammatory responses and antimicrobial immunity. The ratio of

Th17/Treg cells has relevance in evaluation of the immune response

process, as Th17 secretes pro-inflammatory factors (IL-17, IL-22

and IL-23) to recruit neutrophils to promote inflammation at the

site of infection, while Treg cells produce anti-inflammatory factors

(IL-10 and TGF-b) to suppress inflammation (73–75). Liang et al.

found that the expression of Th17 effectors was significantly higher
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in acute HBV infection (AHB) than in chronic infection (CHB),

with prominent proliferation of Treg cells observed in chronic

infection (111). The possible reason for this contrasting cell ratio

might be a variation in the differentiation microenvironment during

HBV infection, with higher levels of IL-23 and IL-6 that promote

Th17 cells in AHB than in CHB, as well as distinctly higher levels of

TGF-b and IL-2 in CHB that sustain Treg cell differentiation (111).

Feng et al. found that peripheral blood Tregs cells expressed IL5-Ra
and PD-1 antigens during chronic infection, which suppressed

peripheral blood mononuclear cells (PBMCs), leading to immune

tolerance to chronic HBV infection (112). However, this cell ratio is

not definitely true in HBV-induced acute hepatitis. In a more recent

study, Le et al. examined the Treg/Th17 ratio in HBV patients with

different progression (113). The results showed that the Treg/Th17

ratio was highest in severe hepatitis episodes but lowest in chronic

HBV infection and healthy individuals, which is contradictory to

previous studies. This might be attributed to the significantly higher

IL17A+ Foxp3+ Treg subset detected in the severe hepatitis group,

which suggests that Treg cells have dual and opposite functions in

immunosuppression and inflammation enhancement during HBV

infection. This non-traditional Treg cell secretes pro-inflammatory

factors (e.g.IL-17A) under inflammatory conditions (e.g.IL-6/IL-23/

IL-1b/TLR stimulation) that exacerbate severe damage during

infection instead (114). The inflammatory transformation of

Tregs has been reported in some pathological changes due to

dysregulation of immune homeostasis, such as psoriatic arthritis,

which may be an important factor in severe inflammatory damage

in acute HBV infection (114, 115). Further, Treg cells in HBV

infection can also inhibit the body’s anti-tumor immune response,

thus promoting the progression of hepatitis B to hepatocellular

carcinoma (116).

Currently, there is no conclusive evidence of how HBV viruses

induce Treg responses. One potential mechanism is that hepatitis B

virus replication induces soluble heat shock protein 60 (HSP60)

production in infected hepatocytes to enhance the effect of Treg

cells. Kondo et al. constructed an in vitro HBV replication system

and detected expression of soluble HSP60 in HBV-replicating

hepatocytes (117). Heat shock proteins (HSP) are constitutively

expressed in all cells and involved in biological processes such as

protein folding and mediating protein translocation across

membranes. Several external conditions (e.g. heat shock, UV

radiation, and bacterial or viral infection) induce the production

of HSP, further engaging in a range of immune processes (118, 119).

In particular, HSP60 has been reported to activate Treg function by

inducing the production of TGF-b and IL-10 (120), as well as

initiate the Toll/IL-1 signaling pathway (121). In vitro studies also

found that HBeAg stimulated upregulation of TGF-b expression in

mouse splenocytes, which led to differentiation into Treg cells (122).

In addition, a new study suggested that the immune mechanism of

Treg in HBV infection may be related to furin (123). As an

endoprotease, furin is involved in production of some cellular

functional proteins and plays a key role in virus infection (124).

For example, it has been proven that the spike protein of SARS-

CoV-2 is cleaved by furin to promote virus-cell fusion (125). Furin

is engaged in the precursor processing of TGF-b1 and is also

expressed abundantly in Treg. Qiu et al. found that furin
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expression and TGF-b secretion were significantly increased in the

in vitro co-culture environment of Treg and HBV-infected

hepatocytes, which indicated that furin and TGF-b1 could form a

positive feedback loop to activate Tregs in HBV infection (123).

One view on how hepatitis B virus induces Treg accumulation in

the liver is that HBV infection can activate IL-8 expression. The study

by Zhang et al. revealed that HBV induces IL-8 expression through the

MEK-ERK pathway which is mediated by HBx (126). It was also found

that the IL-8/CXCR1 axis could reduce intercellular tight junctions

thereby increasing endothelial permeability, which resulted in

significant infiltration of Tregs in the hepatic microenvironment

(126). Previous studies has reported that liver sinusoidal endothelial

cells (LSECs) can induce Tregs generation either by secreting TGF-b or
by anchoring exogenous LAP/TGF-b to the cell membrane via GARP

(127). Zhang et al. further found that CXCR1 could interact with

GARP and increase the GARP expression, which indicated that LSECs

could induce intrahepatic Tregs via the IL-8/CXCR1/GARP pathway

(126). In conclusion, the HBx-activated IL-8/CXCR1 axis may

significantly influence the formation of the immune

microenvironment in HBV infection, with important implications
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for the progression of HBV infection and even HBV-associated

hepatocellular carcinoma. Regarding the recruitment process of Treg

cells into the human liver, it is assumed that stabilin-1 mediates the

migration of T cells through the LSECs (128). Stabilin-1 is a

multifunctional scavenger receptor expressed in human spleen

sinusoidal endothelial cells, as well as in macrophages and blood

sinusoidal endothelial cells (129). Shetty et al. first reported the

expression of stabilin-1 in inflammatory sites of LSECs, which

participate in transendothelial and transcytotic movement of Tregs.

Interestingly, the upregulation of stabilin-1 levels was found to be

independent of pro-inflammatory cytokines, such as IL-4, but rather

influenced by hepatocyte growth factor (HGF), indicating that this may

occur as a result of tissue remodeling in the course of inflammation or

cancer rather than in response to pro-inflammatory signals (128). In

addition, transendothelial migration of Treg cells involves the two

adhesion factors, ICAM-1 and VAP-1 (130), with ICAM-1 mediating

the adhesion of Tregs in the LSEC (131). These observations were also

confirmed in a study by Shetty et al. (128) (Figure 1)

Effects and mechanisms of Tfhs in HBV infection are shown

in Table 2.
FIGURE 1

The role of Treg cells in HBV infection and the mechanism of immune regulation. (By MedPeer) In the inflammatory microenvironment caused by
acute HBV infection, CD4+ T cells are activated by pro-inflammatory factors (IL-4/16/23, TGF-b, etc.) and differentiate into Th17. While in chronic
infection, CD4+ T cells can differentiate or be induced to form Treg in response to TCR signal or TGF-b stimulation; Tregs inhibit the immune
response through cell contact mediated by PD-1 or CTLA4 signal, or through secreting inhibitory cytokines (e.g. IL-2). Tregs may also suppress
peripheral blood mononuclear cells (PBMCs) to exert indirect suppressive effects; Th17 mainly secretes pro-inflammatory factors (IL-17/22) to recruit
neutrophils causing inflammatory injury; Tregs can also undergo inflammatory transformation towards IL-17A+ Foxp3+ Tregs in HBV infection, which
can be driven by cytokines (IL-6/23/1b) or Toll-like receptor (TLR) pathway; Furin is highly expressed in Treg and is also involved in the cleavage of
TGF-b precursors, which has a significant positive cycling relationship with TGF-b in HBV infection models; In acute hepatitis injury, infected
hepatocytes secrete HSP60 to promote Treg activation; HBV induces Tregs to increase IL-8 secretion to improve endothelial permeability thereby
promoting Treg migration and infiltration; Stabilin-1, ICAM-1 and VAP-1 mediate adhesion between Tregs and LSECs, which facilitates Treg migration.
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5 Follicular T helper cell in HBV
infection

5.1 Origin and molecular mechanisms

Tfh cells are a subset of CD4+ T cells existing in the follicles of

peripheral lymphoid organs and are critical for the immune response of

B cells. Tfh differentiation originates from the interaction between

naïve CD4+ T cells and myeloid APCs (132). The Tfh differentiation

process involves multiple factors that can be divided into three stages.

Early differentiation is regulated by IL-6, ICOS, or IL-2 stimulation,

which mediates CXCR5, Bcl6 and other target protein expression. In

particular, IL-6 regulates the expression of the transcription factor Bcl6,

which promotes Tfh differentiation while inhibiting the transition to

Th1, Th2 and Th17 (133). Another important cytokine that modulates

the initial Tfh differentiation is IL-2, which induces STAT5 expression

that inhibits Bcl6 expression and thus suppresses Tfh differentiation

(134, 135). In addition, miR-19~72, a microRNA cluster, was reported

to inhibit PI(3)K-inactivating phosphatases (PHLPP2 and PTEN),

which are inhibitors of ICOS signaling (132, 136). The second stage

of differentiation involves T cells interacting with antigen-specific B

cells in the follicle, interfollicular zone, or follicular T-B boundary. At

this point, Tfh and B cells are co-localized and have tight interaction as

a result of the co-expression of CXCR5 (132, 137). The third stage of

differentiation occurs in the germinal center (GC) and is characterized

by having high expression of CXCR5, low expression of CCR7, elevated

expression of CXCR4, low levels of SIP1R and low levels of PSGL1 on

Tfh cells (132). After interacting with B cells, Tfh cells in the GC

translocate to the next germinal center, remain in the follicles of

adjacent B cells waiting to re-enter the same GC, or leave the GC to

become memory Tfh cells (138).

Tfh cells drive the survival and differentiation of B cells in

germinal centers (139). Tfh cells highly express CD40L, which by

binding to the CD40 on B cells, activating signaling pathways to
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prevent apoptosis. Additionally, IL-21 and IL-4 produced by Tfh

cells induce the proliferation and differentiation of GC B cells, with

IL-21 upregulating Bcl6 expression in B cells to maintain survival,

antibody maturation and differentiation towards plasma cells, and

with IL-4 enhancing the intensity of glucose metabolism to sustain

energy supply (139). A further essential contribution of Tfh cells to

B cells is chemotaxis via high expression of CXCL14, the ligand for

CXCR5, which recruits B cells for activation (140). Furthermore,

Tfh cells also express SLAM-associated proteins (SAP), essential for

antigen-specific T-B adhesion and signaling. The role of SAP has

been reported to be independent of CD40-CD40L and CXCL14-

CXCR5 interactions (141, 142). As an intracellular adaptor protein

that regulates immune responses, SAP binds to members of the

SLAM family of receptors, of which those expressed by CD4+ T

cells and most significantly upregulated in Tfh cells include SLAM,

Ly9, CD84 and Ly108 (142). Recent studies have revealed multiple

roles of SAP in the interactions between Tfh cells and B cells.

Foremost, SAP mediates T-B cell adhesion by binding to the

cytoplasmic tail of SLAM family receptors and recruiting

molecules such as the Src family kinase Fyn to mediate positive

signaling (139, 143, 144). Secondly, SAP was also found to mediate

the regulation of TCR signaling, for instance, positive signaling of

SAP acting with Ly108 maintains ERK activation to amplify TCR

signaling (139, 143). Moreover, SAP is also involved in the

regulation of cytokine secretion, with SLAM shown to induce IL-

4 production by Tfh cells (145). Inside the germinal center, B cells

located in the light zone (LZ) upregulate SLAM expression while

Tfh cells in the dark zone (DZ) overexpress SAP, resulting in

elevated IL-4 production (139).
5.2 Role in HBV infection

Significant expansion of Tfh cells has been reported in HBV-

infected patients (146–148). In addition, Simpson et al. found a high
TABLE 2 Effects and mechanisms of Tregs in HBV infection.

Study Related Protein Mechanism

Liang, 2012 (111) IL-1b、IL-23、IL-6、
TGF-b1、IL-2

Treg/Th17 imbalance is generally seen in chronic infections, while Treg increase causes immunosuppression and
persistent viral infections. Th17 increase is seen in acute infections and predisposes to inflammatory damage.

Feng, 2007 (112) IL-5Ra、PD-1 Suppression of peripheral monocytes, leading to immune tolerance to chronic HBV infection

Le, 2023 (113) IL-17A
(IL-17A+ Foxp3+ Treg↑)

1. Pro-inflammatory factor induction (IL-6, IL-23 and IL-1b) (114);
2. Toll-like receptor (TLR) stimulation (114);
3. Resulting in Inflammatory injury;

Kondo, 2010 (117) sHSP60 1.Induction of TGF-b and IL-10 (120);
2.Activation of Toll/IL-1 signaling pathway (121);

Tang, 2020 (122) HBeAg HBeAg induces TGF-b1 expression.

Qiu, 2022 (123) Furin Furin is involved in TGF-b generation;

Zhang, 2021 (126) IL-8/CXCR1 axis 1.HBV induces IL-8 expression mediated by HBx via MEK/ERK pathway;
2.IL-8/CXCR1 axis increases endothelial permeability;
3.Intrahepatic induced Tregs formation via IL-8/CXCR1/GARP pathway;

Shetty, 2011 (128) stabilin-1 Stabilin-1 mediates the migration of Treg across the endothelium and across cells.

Lalor, 2002 (130) ICAM-1、VAP-1 Involvement of adhesion during transendothelial migration
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rate of peripheral blood Tfh cells in patients with systemic lupus

erythematosus (SLE) and dry syndrome (SS), indicating that the

expansion of Tfh cells may be a feature of impaired

immunosuppressive function (149), while also reflecting a positive

trend to humoral immunity, due to the important role of Tfh cells

on antigen-specific B cells. The other powerful evidence is that Tfh

cells export was tracked in healthy individuals after hepatitis B

vaccination and found to be significantly elevated (150, 151). These

suggest that circulating Tfh (cTfh) cells are involved in changes of

humoral immunity during HBV infection. IL-33, as a member of

the IL-1 cytokine superfamily, has been shown to drive the

expression of Th2-related cytokines, which in turn drive humoral

immune processes (152). Jiang et al. found that IL-33 treatment

could activate CD4 + CXCR5 + Tfh to restore humoral immunity in

HBV-infected mice. The mechanism may be that IL-33 binds to its

receptor and induces the activation of STAT4, which enhances Bcl6

expression and thus promotes Tfh differentiation (153). So, are

there more cytokines involved in the activation of Tfhs? Ayithan

et al. showed that activation of toll-like receptor 8 could drive

monocytes to secrete IL-12, which in turn promotes the

differentiation of CD4+ T cells to Tfhs in the peripheral blood of

HBV patients. Correspondingly, they found higher HBsAg

concentrations in patients treated with TLR8 agonists, suggesting

a new therapy (17). Interestingly, a similar mechanism was also

found in the TLR7-mediated signaling pathway. Mori et al. found

that TLR7 stimulator (GS-986) treated peripheral dendritic cells

expressed OX40L and produced IL-6/IL-12, leading to the

induction of Tfh cells from naïve CD4+ T cells (154).

Seroconversion is an important indicator of the course of

chronic HBV disease. Seroconversion of HBeAg indicates

suppression of viral replication, while seroconversion of HBsAg

suggests functional cure. As an essential component involved in

serological conversion, the change in the effect of Tfhs during HBV

infection is of great significance. It has been reported that HBsAg-

specific follicular helper T cells are distinctly defective in HBV-

infected mice, which directly leads to a lack of HBsAb (155, 156).

Based on the fact that this suppression of Tfh is likely due to Tregs

inhibitory function, a therapeutic strategy was proposed in the

study by Wang et al. (155) They utilized the humanized anti-

CTLA4 monoclonal antibody ipilimumabz to block the inhibitory

effect of Treg and found that the defective of HBsAg-specific Tfhs

was improved and serumHBsAb concentration was raised. Tfh cells

during chronic HBV infection may also have an essential impact on

the seroconversion of HBeAg (157, 158). Vyas et al. found that

when seroconversion occurred spontaneously in HBV patients, the

incidence of seroconversion was higher for HBeAg than for HBsAg

(158). Publicover et al. found that mice lacking IL-21 receptors on

splenocytes failed to produce HBsAb, resulting in persistent HBV

infection (159). Similar results were obtained in a study by Zhang

et al. In addition, they proposed that upregulation of PD-1/PD-1L

affected the seroconversion of HBeAg by providing inhibitory

signals (157). Hu et al. found lower HBsAg in patients treated

with PEG-IFN-a who had increased PD-1 hi CXCR5 + CD4 + T

cells, suggesting that the increase in Tfh with high PD-1 expression

promotes a decrease in HBsAg (160) It has also been suggested that

PD-1 hi CD4 + CXCR5 + Tfh cells, may be involved in the
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pathogenesis of HBV-associated membranous nephropathy by

promoting the secretion of corresponding antibodies leading to

the deposit ion of antigen-antibody complexes (161).

Complementarily, it has been reported that HBV may upregulate

PD-1 expression in Tfh cells by promoting prostaglandin E2(PGE2)

secretion in infected hepatocytes, while HBeAg and HBsAg secreted

by HepG2.2.1.5, the cell line selected for the study, did not directly

evoke variation in PD-1 levels (162). PGE2 is secreted by a variety of

cells as well as acting on most components of the immune system to

regulate the immune response or inflammatory response (163). In

particular, as an upstream signaling molecule of PGE2, COX-2 has

been reported to be upregulated by HBxAg to promote the

proliferation of HepG2 cells (162, 164). In conclusion, CD4+

CXCR5+ T cells expand with increasing strength of humoral

immunity at the beginning of HBV infection, whereas in patients

with chronic hepatitis B infection, suppression of antigen-specific B

cells may be associated with increased PD-1 expression in Tfh cells.

In addition to PD-1/PD-1L, other signals may also affect the Tfh-B

cell axis. Poonia et al. found that during chronic HBV infection, the

overactivated Tfh population upregulates CD40L expression (16).

In general, CD40/CD40L interaction is a key signal for Tfh to

promote plasma cell formation and antibody secretion. However,

excessive CD40L stimulation affects the direction of B cell

differentiation, which inhibits terminal B cells differentiating into

long-lived plasma cells (16).

A recent study also suggested that although Tfhs exhibit IL-21

deficiency but IL-27 secretion is not affected during HBV infection,

which allows them to maintain a certain level of humoral immunity.

Khanam et al. suggested that Tfhs induces formation of

plasmablasts and plasma cells by secreting IL-27 (165). They also

found that blocking the IL-27 pathway caused an extremely low

expression of Blimp-1 (a protein which is important for antibody

production), which indicates that IL-27 may be a potential

promoter of Blimp-1. Interestingly, several studies have already

reported the importance of detecting IL-27 expression in predicting

the development of HBV infection (166–168). In summary, Tfhs

during HBV infection maintain the secretion of HBsAg and total

HBV-Ab by secreting IL-27 that interacts with B-cell surface

homologous receptors to activate downstream signals, leading to

the activation of plasmablasts and plasma cells and increased

expression of Blimp-1 (165) (Figure 2).

Effects and mechanisms of Tfhs in HBV infection are shown

in Table 3.
6 Potential treatment

Based on the above discussion, the process of reconstitution of

the T-cell immune response is an overarching theme in the cure of

hepatitis B. A recent study by Oliver’s team revealed the great

potential of the TLR8 agonist GS-9668 for the treatment of HBV

infection. In vitro treatment of peripheral blood mononuclear cells

with GS-9688 resulted in a decrease in Treg cells frequency and an

increase in CD4+ Tfh cells frequency (169). TLR serve an essential

function in immune responses induced by some viral infections. In

human respiratory syncytial virus infection, TLR8 is important for
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FIGURE 2

The role of follicular T helper cells in HBV infection and the mechanism of immune regulation. (By MedPeer). Naive CD4+ T cells are induced to
differentiate into Bcl -6+Tfh in response to cytokines such as IL-6, while IL-2 is a suppressor of this process; In HBV infection, Tregs inhibit Tfh
function through CTLA-4 signaling, and the human monoclonal antibody Ipilimumabz reverses this inhibitory effect by specifically blocking CTLA-4
signaling; Tfh secretes IL-21 to drive B cell responses while knockout IL-21R mice fail to secrete HBsAb; In HBV infection, increased secretion of
PGE2 by damaged hepatocytes and other tissue cells promotes PD-1 expression of Tfh; In chronic HBV infection, Tfh can still secrete IL-27 to drive
some humoral immunity despite the fact that IL-21+Tfh is significantly suppressed——IL-27 activates plasmablasts and plasma cells as well as
activates Blimp-1 expression to maintain HBV-antibodies production; IL-33 enhances Bcl6 expression which promotes Tfh differentiation; Activation
of TLR8 drives IL-12 secretion from monocytes which drives Tfh differentiation; TLR7 stimulator (GS-986) promotes pDCs to produced IL-6/12; Tfhs
promote the formation of immune complexes and aggravates the progression of HBV-associated membranous nephritis.
TABLE 3 Effects and mechanisms of Tfhs in HBV infection.

Study Related Protein Mechanism

Wang, 2018 (152) CTLA4 Treg proliferation inhibits Tfh formation and blocking CTLA4 signal can reverse this inhibition.

Publicover, 2011
(156)

IL-21R The mice lacking of IL-21R failed to produce HBsAb.

Hu, 2018 (160) PD-1 Tfh with high PD-1 expression promotes a decrease in HBsAg.

Liu, 2014 (161) antigen-antibody
complexes

Tfh promotes the formation of immune complexes and aggravates the progression of HBV-associated membranous
nephritis.

Sui, 2017 (157) PGE2、PD-1 High expression of PGE2 of hepatocytes induces PD-1 expression of Tfhs.

Khanam, 2012 (160) IL-27/blimp-1 1.Tfhs induces formation of plasmablasts and plasma cells by secreting IL-27;
2. IL-27 may be a potential promoter of Blimp-1.

Jiang, 2015 (153) IL-33 1. IL-33 treatment could activate CD4 + CXCR5 + Tfh to restore humoral immunity in HBV-infected mice.
2. IL-33 might enhance Bcl6 expression which promotes Tfh differentiation.

Ayithan, 2021 (17) TLR-8/IL-12 1. Activation of TLR8 drives IL-12 secretion from monocytes.
2. IL-12 drives Tfh differentiation in PBMC from HBV patients.

Mori, 2023 (154) TLR-7、GS-986 TLR7 stimulator (GS-986) promotes pDCs to express OX40L and produced IL-6/IL-12.

Poonia, 2018 (16) CD40L/CD40 Tfh overexpresses CD40L and leads to abnormal B-cell differentiation direction.
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inducing TNF-a production that corresponds to recovery (170).

Carolina et al. proposed a clinical treatment option through a

combination of GS-4774 and tenofovir. The yeast vector-based

GS-4774 vaccine contains hepatitis B virus S, X and C proteins.

Both in vivo and in vitro experiments showed enhanced specific

CD8+ T cell responses after vaccination with GS-4774 (171).

Meanwhile, the yeast carrier component promotes the

differentiation of naive T cells to Th17 cells, but not Treg cells, by

inducing IL-1b, resulting in a decrease in Treg cell frequency (171,

172). In general, HBV treatment is mainly directed against viral

proteins as well as infection-induced immune dysregulation. While

various vaccines based on the former have been clinically validated,

immunotherapy requires further clinical research.
7 Conclusion

Hepatitis B is receiving increasing attention as one of the major

health threats worldwide. This review first described the HBV

molecular biology and the mechanisms of hepatocyte invasion,

and then introduced the immune mechanisms of the liver after

hepatitis B virus infection, focusing on cellular immunity as well as

humoral immunity. We further focused on the range of activities of

Tregs and Tfh cells in HBV infection and suggested several

potential mechanisms of HBV infection. However, there are still

many questions that remain to be elucidated, such as how HBV

infection actually regulates the proliferation of Treg cells and Tfh

cells and their signaling pathways. Finally, immunotherapy
Frontiers in Immunology 10
targeting T cells may be a future direction for the treatment of

hepatitis B, which requires further research on specific mechanisms

and more data from clinical trials.
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