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Abstract: The bacterial community of the intestinal microbiota influences many host functions, and
similar effects have been recently reported for the fungal community (mycobiota). Cobia is a tropical
fish that has been studied for its potential in marine aquaculture. However, the study of its bacterial
community has been underreported and the mycobiota has not been investigated. We analyzed
the gut bacterial and fungal profile present in the intestinal mucosa of reared adult cobias fed two
diets (frozen fish pieces (FFPs) and formulated feed (FF)) for 4 months by sequencing the 16S rRNA
(V3-V4) and internal transcribed spacer-2 (ITS2) regions using Illumina NovaSeq 6000. No significant
differences in the alpha diversity of the bacterial community were observed, which was dominated
by the phyla Proteobacteria (~96%) and Firmicutes (~1%). Cobia fed FF showed higher abundance
of 10 genera, mainly UCG-002 (Family Oscillospiraceae) and Faecalibacterium, compared to cobia fed
FFPs, which showed higher abundance of 7 genera, mainly Methylobacterium-Methylorubrum and
Cutibacterium. The inferred bacterial functions were related to metabolism, environmental information
processing and cellular processes; and no differences were found between diets. In mycobiota, no
differences were observed in the diversity and composition of cobia fed the two diets. The mycobiota
was dominated by the phyla Ascomycota (~88%) and Basidiomycota (~11%). This is the first study to
describe the gut bacterial and fungal communities in cobia reared under captive conditions and fed
on different diets and to identify the genus Ascobulus as a new member of the core fish mycobiota.

Keywords: cobia; Rachycentron canadum; microbiota; bacterial community; mycobiota; metabarcoding;
functional analysis; 16S rRNA gene; ITS2

1. Introduction

The intestinal microbiota is composed of a large and complex diversity of microorgan-
isms including bacteria, yeasts, viruses, archaea and protozoa [1,2]. Microorganisms influ-
ence several host functions, including development, digestion, nutrition, disease resistance
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and immunity [3–5]. The autochthonous microbiota is considered of greater importance
to the host because of its close association with the mucosal epithelium, stimulating the
immune system, nutrient exchange and preventing colonization by pathogens [6].

There are at least 28,000 species of fish, representing almost half of all living verte-
brates [7].They can live in marine, estuarine or freshwater habitats; they have different gut
morphologies adapted to different dietary habits (herbivorous, omnivorous and carnivores)
which can impact their gut microbiota composition [8]. Cobia (Rachycentron canadum) is a
carnivorous marine benthopelagic fish that lives and feeds near the bottom, in mid-water or
near the surface. It has a high potential for large-scale production in aquaculture facilities
due to its rapid growth, easy adaptation to captivity, good meat quality and high demand
from Asian consumers [9]. It is a tropical and subtropical species widely distributed
worldwide except in the eastern Pacific [9]. A few studies have described the bacterial
components of the cobia gut microbiota using 16S rRNA metabarcoding, revealing different
compositions according to rearing conditions and fish development stages [10–13]. In
these studies, cobia were reared in China, India and the South Caribbean Sea of Colombia.
Ecuador is the only country in the eastern Pacific that cultivates cobia. This species has
been introduced to diversify aquaculture production, and in spite of the role of the gut
microbiota in fish health, no studies have been performed to characterize its composition.

The fungal community or mycobiota of fish has been poorly studied. We previously
described the dominant gut mycobiota of marine fish including salmonids (Salmo salar,
Oncorhynchus kisutch and Oncorhynchus mykiss), croaker (Cilus gilberti) and yellowtail amber-
jack (Seriola lalandi) using polymerase chain reaction and temporal temperature gradient gel
electrophoresis (PCR-TTGE) [14]. We also recently identified the mycobiota of cultured red
cusk-eel (Genypterus chilensis), palm ruff (Seriolella violacea) [15] and cobia [16]. Sequencing
the ITS, especially the ITS2 region, located between the 5.8S and 28S rRNA genes, has been
highly recommended to identify fungal microorganisms [17–19]. This approach has been
applied mainly to describe the mycobiota of freshwater fish [20–23]. These studies showed
that the fish gut mycobiota is highly dependent on the fish host, which justifies the analysis
of each fish species.

Most of the microorganisms identified in fish mycobiota are yeasts belonging to the
phyla Ascomycota and Basidiomycota, although filamentous fungi of Zygomycota [21],
Cryptomycota, Neocallimastigomycota [22], and others have also been identified. Interest-
ingly, some yeasts of this mycobiota have shown probiotic effects [15,16,24–27]. Considering
the beneficial effect of some fungal commensals, further studies are needed to describe
this community and understand how this mycobiota can respond to external factors such
as diet.

Providing healthy diets for a growing aquaculture is a challenging task, especially in
fish with aquaculture potential such as cobia. Aquaculture centers often test different feed
formulations for a specific fish species to improve its performance. However, studies in
fish of advanced developmental stages (broodstock) are complex and the formulation of
diets remains a challenge, in which case the use of fresh or frozen diets is an alternative.
Although the effect of diet on the gut bacterial community of fish has been extensively
studied [28], little is known about the effects of fresh/frozen and dry/formulated diets
under similar culture conditions, considering that fresh/frozen diets are still widely used
for reared marine fish in the reproductive phase.

Considering that the gut mycobiota of marine fish has not been described, and neither
has the microbiota of cobia reared in the eastern Pacific, we characterized the bacterial
and fungal communities of the intestinal mucosa of cobia fish fed two diets (frozen fish
pieces (FFPs) and a commercial formulated feed (FF)) by sequencing the 16S rRNA gene
and ITS2 region. We also analyzed the effect of diets in the inferred bacterial functions
using Tax4fun2 analysis.



Microorganisms 2023, 11, 2315 3 of 18

2. Materials and Methods

The aim of this study was to describe the structure and composition of the microbiota of
cobia under captive conditions and fed two types of diets. We determined the effect of diets
on alpha diversity (primary outcome) of bacterial and fungal communities (mycobiota).
As secondary outcomes, we determined the effect of diets on structure (beta diversity),
differential abundance of microbial taxa (relative abundance of phyla/genera and LEfSe)
and inferred functions. In addition, we described the composition of the core bacterial
and fungal microbiota at the phylum and genus level shared by all fish and performed an
exploratory analysis to evaluate the correlation between bacterial and fungal communities.

2.1. Fish and Experimental Design

This study was conducted in the National Center for Aquaculture and Marine Research
of the ESPOL Polytechnic University (CENAIM–ESPOL), located in the province of Santa
Elena, Ecuador (1◦57′17.9′′ S; 80◦43′44.9′′ W). Healthy cobia were obtained from a group of
broodstock from CENAIM–ESPOL. Ninety fish were selected and randomly assigned to
4 tanks and reared under laboratory conditions in open flow systems at 35 g L−1 salinity,
natural photoperiod (12:12 light dark), and 26.90 ± 0.72 ◦C. For four months, fish were
fed ad libitum once a day with two types of diets; two tanks were fed formulated feed
(FF) and two tanks were fed frozen fish pieces (FFPs) (diet composition is detailed in
Supplementary Table S1). No antibiotics were used before or during the feeding period. A
total of 18 healthy adult fish (9 fish per group) were randomly selected to analyze the gut
microbiota (Supplementary Table S2). Fish health was assessed by visual inspection, i.e.,
those showing normal swimming and feeding behavior and no signs of bacterial, fungal or
viral disease.

2.2. Intestinal Samples

For intestinal sampling (February 2021), fish were fasted 24 h prior to sacrifice by
immersion in an overdose of anesthetic solution (50 mg L−1 eugenol, Eufar, Bogota, Colom-
bia). The entire intestine of each fish was removed under sterile conditions and gently
squeezed to remove its contents. The intestine was then dissected with sterile scissors and
washed with sterile saline solution (NaCl 0.89%). To obtain intestinal mucosal samples,
the intestinal epithelial layer was scraped with a sterile scalpel and carefully transferred
to 1.5 mL tubes. These samples were immersed in 5 volumes of RNAlater (Invitrogen,
Carlsbad, CA, USA) to preserve the DNA [29], and transported at room temperature to the
Microbiology and Probiotics Laboratory of the Institute of Nutrition and Food Technology
(INTA) in Santiago, Chile, for DNA extraction.

2.3. DNA Extraction and Amplicon Sequencing

To sequence the DNA regions of the bacterial and fungal communities, DNA was
extracted from the intestinal mucosa of fish. Intestinal samples containing RNAlater were
diluted 1:1 in 1X phosphate-buffered saline (PBS) (Thermo Fisher Scientific, Inc., Waltham,
MA, USA) according to the manufacturer’s instructions [30]. They were centrifuged at
15,000× g and the supernatant was carefully removed. Total genomic DNA (gDNA)
from pelleted samples was obtained using the DNeasy® PowerSoil® Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. A negative control consisting
of DNA extraction from an equal volume of 1X PBS was included to control potential
contamination of the reagents.

The gDNA from each sample was amplified to verify the presence of the 16S rRNA
and ITS2 regions using primers 341F (5′-CCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′), and ITS3F (5′-GCATCGATGAAGAACGCAGC-3′)
and ITS4R (5′-TCCTCCGCTTATTGATATGC-3′), respectively. The amplification reaction
was performed according to [16], with slight modifications.

The gDNA from samples with positive amplification using the above-mentioned
primers was submitted to Novogene Corporation Inc. (Sacramento, CA, USA) for se-



Microorganisms 2023, 11, 2315 4 of 18

quencing according to Novogene protocols. The bacterial community of the microbiota
was identified using primers 341F and 785R (5′-GACTACHVGGGTATCTAATCC-3′) to
sequence the V3–V4 region of the 16S rRNA gene. Mycobiota were identified by sequencing
the ITS2 region, located between the 5.8S and 28S rRNA genes, according to recommen-
dations [17–19], using primers ITS3F and ITS4R. PCR products of appropriate size were
selected by 2% agarose gel electrophoresis. Quantified libraries were pooled and sequenced
on an Illumina NovaSeq 6000 PE250 platform to generate 100,000 reads of 250 bp raw
paired-end reads. At Novogene, paired-end reads were assigned to samples based on their
unique barcode (demultiplex), then the barcode and primer sequence were truncated. Qual-
ity filtering was performed on the raw reads under specific filtering conditions (primers
and adapters were trimmed from the reads; reads whose lengths were less than 60 bp
after trimming the primers and adapters from the ends of the reads were removed; reads
containing N > 10% were removed; and reads containing more than 50% bases with low
quality (Qscore ≤ 5) were removed).

2.4. Identification of Microbial Communities Using Bioinformatic Analysis

For the taxonomic identification of the reads obtained by sequencing, demultiplexed
paired-end FASTQ reads and downstream analysis were processed in the DADA2 [31],
phyloseq [32] and microbiome [33] packages in R statistical software version 4.2.2. The
DADA2 package was used to clean and denoise the raw FASTQ reads, the Q-score was
calculated, and trimming and filtering were performed to maintain high quality reads
(Qscore ≥ 30), removing reads with unassigned nucleotides (NA). Then, the error rates
of reads were calculated based on 1 × 108 sequences; the reads were denoised and the
amplicon sequence variants (ASVs) were inferred. The denoised reads were merged and
chimeras were removed. Samples with low numbers of clean reads (<400) were excluded
from the analysis. The ASVs of the bacterial community were assigned taxonomically using
the SILVA database version 138.1 [34]; the UNITE ITS database version 9.0 [35] was used
for the fungal community. A distance matrix was calculated using neighbor-joining to
construct a phylogeny with the phyloseq package. Rarefaction was normalized to the data
set containing the least number of sequences to remove heterogeneity between samples.
For 16S rRNA analysis, the phyloseq object was filtered by removing the non-assigned
(NA) phyla and genera. Only the unassigned phyla were removed for ITS analysis.

2.5. Sample Size and Statistical Analysis

To estimate sample size, we focused on alpha diversity of the microbial communities
(primary outcome). Based on previous studies describing the effect of diet on the fish gut
microbiota and inter-individual variability [36,37], we estimated that 9 individuals per
diet group would be needed to detect a between-group difference in a Chao1 index of
280, with a Cohen effect size of 1.5, with the assumptions of two-tailed, alpha value of
0.05, and a power of 0.80. The computation was performed by using GPower 3.1 software.
In addition, we determined that this number of samples of each group was sufficient
to describe most of the diversity (>90% of the identified ASVs), as previously described
(Panteli 2020) (Supplementary Figure S5).

For alpha diversity (primary outcome), the Chao1 index (based on the abundance
of rare or infrequent species that have not been detected in the samples) was calculated.
In addition, other alpha diversity indices were determined, such as richness (observed
ASVs), Simpson (measures the probability that two randomly selected individuals belong
to the same species), Shannon (measures the species diversity and equitability, i.e., how
the relative abundances of different species are distributed in a community), and ACE
(abundance-based coverage estimator, based on the species coverage in the sample). Alpha
diversity was expressed as mean ± standard deviation, and t-tests were performed to
detect significant differences (p ≤ 0.05) in those indices between diet groups after testing
for normality (Shapiro–Wilks test [38]) and homogeneity of variances (Levene test).
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To analyze the structure of the intestinal bacterial community of cobia fed the two diets,
beta diversity was analyzed by principal coordinate analysis (PCoA) using unweighted
Unifrac and weighted Unifrac (WUnifrac) distances. To identify significant differences
(p ≤ 0.05), a PERMANOVA was performed. The Adonis2 and the Betadisper tests were
performed to verify the homogeneity of variance between groups [39] using the vegan
package. All diversity analyses were performed by the microbiome package.

The relative abundances of the dominant (detection threshold > 5%) taxa (phyla and
genera) per group were plotted. To determine the taxa contributing to the differences
between cobia groups (differential abundance), a linear discriminant analysis (LDA) effect
size analysis (LEfSe) was performed. This analysis was performed using the Microeco
package with a significance level of p ≤ 0.05 and LDA threshold score ≥ 2.0 [40].

Bacterial functions were predicted using the ASVs against the pathway reference
profiles (Ref99NR) from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
The Tax4fun2 package was used to predict the pathways, which were categorized into
levels 1, 2 and 3. Similarities greater than 97% were considered orthologous KEGG groups
(KOs) [41]. To identify significant differences (p ≤ 0.05) in predicted bacterial pathway
composition between fish fed the two diets, PCoA and PERMANOVA were carried out.

Bacterial and fungal taxa belonging to the core corresponded to those phyla and genera
with prevalence > 70% and relative abundance > 0.1%. The microorganisms belonging to
the core of each group were described using a heat map constructed by the microbiome
package.

To determine the association between fungal and bacterial communities, a Spearman
analysis was performed for correlation and plotted on a heatmap of the microbial abun-
dances using the microbiome package. This plot shows taxa with a significant correlation
(p ≤ 0.05) for phyla and genera.

R statistical software version 4.2.2 was used for all analyses.

3. Results

Eighteen healthy adults from the CENAIM–ESPOL center were sampled to identify the
bacterial and fungal communities of the intestinal mucosa of cobias (Rachycentron canadum).
Two fish were not analyzed because the amount of intestinal mucus was insufficient for
DNA extraction. The bacterial community was identified in 15 samples: 7 fish fed with a
commercially formulated feed (FF) and 8 fed with frozen fish pieces (FFPs). One sample
(C16) from the FF diet group was excluded from the analysis due to the low number of
clean reads (<400) after FASTQ processing.

The mycobiota was identified in 12 samples, corresponding to 6 FF-fed and 6 FFPs-fed
fish. Four samples were excluded from the analysis: two (C11 and C15) because they
showed a low number of clean reads and two (C17 and C19) because they did not pass the
quality control at the Novogene sequencing center (Supplementary Table S2). As expected,
the negative control (contamination control for reagents) did not pass the DNA quality
control and was not sequenced.

3.1. Bacterial Community Composition

A total of 1,166,578 clean reads and 19,017 ASVs were obtained from 15 samples. Of
the 19,017 ASVs, 18,343 (96.46%) were assigned to a phylum and 13,131 (69.05%) to a genus.
The data were then rarefied to 52,690 reads, corresponding to sample C35, which contained
the lowest number of reads (Supplementary Figure S1). After rarefaction, we obtained a
total of 790,350 reads and 9713 ASVs belonging to 24 phyla and 343 genera.

3.1.1. Effect of Diet on Alpha Diversity (Primary Outcome)

No significant differences were observed in alpha diversity indices between the groups
(Table 1). In general, we found a Chao1 index of 657.56± 138.59, richness of 647.53 ± 136.09,
Simpson index of 147.44 ± 53.65, Inverse Simpson index of 0.99 ± 0.00, Shannon index of
5.32 ± 0.33 and ACE index of 655.66 ± 137.71.
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Table 1. Alpha diversity indices of cobia intestinal bacterial communities. Diet: FF, formulated feed;
and FFP, frozen fish pieces. Mean ± standard deviation.

Index
Diet p-Value

FF FFP

Chao1 645.22 ± 126.38 668.37 ± 156.33 0.760
Richness 634.00 ± 125.32 659.38 ± 152.42 0.733
Simpson 0.99 ± 0.00 0.99 ± 0.00 0.127

Inv. Simpson 124.96 ± 36.71 167.12 ± 60.44 0.133
Shannon 5.18 ± 0.31 5.45 ± 0.30 0.112

ACE 642.51 ± 125.57 667.17 ± 155.20 0.743

3.1.2. Effect of Diet on Beta Diversity

To analyze the structure of the intestinal bacterial community of cobia fed FF and
FFP diets, beta diversity was analyzed by PCoA using unweighted Unifrac and weighted
Unifrac (WUnifrac) distances (Figure 1). PCoA based on unweighted Unifrac showed
significant differences (p = 0.001) between groups (Figure 1A), meaning that the taxa
identified in the groups were phylogenetically different. In contrast, we did not observe
differences according to diets (p = 0.189) using the WUnifrac distances (Figure 1B). This
meant that the taxa identified in the groups were phylogenetically different, but they did
not differ in their relative abundance. In particular, sample C15, corresponding to a fish
fed FFPs, was grouped to the fish fed FF, showing that the relative abundance of its most
abundant taxa was more similar to fish fed FF.
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Unifrac distance, significant differences between groups; the principal components explained 15.4 
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Figure 1. PCoA analysis of bacterial communities of cobia (Rachycentron canadum) fed formulated
feed (FF, small blue dots) and frozen fish pieces (FFP, small red dots) using ASVs. (A) Unweighted
Unifrac distance, significant differences between groups; the principal components explained 15.4
and 10.8% of data variance; and (B) weighted Unifrac distance, non-significant differences between
groups; the principal components explained 45.2 and 17.1% of data variance. The ellipses (blue and
red) represent 95% confidence level for each group for a multivariate normal distribution.

3.1.3. Differential Abundances of Bacterial Communities

When we analyzed the relative abundance of bacterial communities, we ob-
served that they were dominated by the phyla Proteobacteria (FF = 96.28 ± 1.27% and
FFPs = 96.58 ± 1.95%), Firmicutes (FF = 1.32 ± 0.63% and FFPs = 1.23 ± 1.80%), Actinobac-
teriota (FF = 0.94± 0.52% and FFPs = 0.98± 0.44%) and Acidobacteriota (FF = 0.30 ± 0.11%
and FFPs = 0.24 ± 0.17%) (Figure 2A). The bacterial community was dominated by the gen-
era Photobacterium (FF = 86.74± 7.62% and FFPs = 70.70± 31.17%), Vibrio (FF = 4.55 ± 4.28%
and FFPs = 20.30 ± 29.42%), Catenococcus (FF = 2.82 ± 2.84% and FFPs = 2.88 ± 1.42%) and
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Enterovibrio (FF = 0.40 ± 0.10% and FFPs = 0.90 ± 0.96%) (Figure 2B). The less abundant
phyla and genera are shown in Supplementary Table S3.
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Figure 2. Dominant bacterial communities identified in the intestinal mucosa of cobia (Rachycentron
canadum) fed formulated feed (FF) and frozen fish pieces (FFP). (A) Bacterial phyla and (B) bacterial
genera composition. Bacterial taxa in this figure had a prevalence and detection threshold greater
than 50% and 1%, respectively.

To identify the bacterial taxa that contributed to the differences of fish fed the two
diets, we performed linear discriminant analysis effect size (LEfSe). Seventeen bacterial
genera were differentially identified. Ten genera showed higher relative abundance in
FF-fed fish: UCG-002 (family Oscillospiraceae), Faecalibacterium, NK4A136 group (family
Lachnospiraceae), R-7 group (family Christensenellaceae), Klebsiella, UCG-005 (family Oscil-
lospiraceae), Parabacteroides, Desulfovibrio, Stenotrophomonas and Roseburia. Seven genera
showed higher relative abundance in FFPs-fed fish: Actinobacillus, Marivita, Blastomonas,
Pontimonas, Curvibacter, Cutibacterium and Methylobacterium-Methylorubrum (Figure 3A).
The abundance of all these genera were lower than 0.5% (Figure 3B).
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3.1.4. Effect of Diet on Inferred Bacterial Functions

Finally, to detect differences in the inferred bacterial functions between the groups,
we performed a Tax4fun2 analysis. A total of 21,620 KEGG genes were obtained. The
relative abundances of bacterial pathways at three levels were similar between the bac-
terial communities of fish fed both diets (PERMANOVA, p ≥ 0.05). At level 1, we found
metabolic functions (69.62± 1.12%), environmental information processing (12.64± 0.68%),
cellular processes (8.70 ± 0.61%), genetic information processing (4.24 ± 0.24%), human
diseases (3.29 ± 0.03%) and organismal systems (1.29 ± 0.03%) (Figure 4A). The most
abundant pathways at level 2 were related to global and overview maps (34.81 ± 0.59%)
and carbohydrate metabolism (10.33 ± 0.15%) (Figure 4B). The most abundant pathways
at level 3 were related to metabolic pathways (13.40 ± 0.26%) and secondary metabolite
biosynthesis (5.87 ± 0.17%) (Figure 4C).

Microorganisms 2023, 11, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 4. Relative abundance of bacterial pathways of cobia (Rachycentron canadum) fed with FF, 
formulated feed, and FFP, frozen fish pieces. (A) At level 1, (B) at level 2 and (C) at level 3. 

3.1.5. Core of the Bacterial Community 
The core corresponded to those bacterial taxa showing a prevalence greater than 70% 

and a minimum detection threshold of 0.1% in all analyzed cobia. The bacterial core was 
composed of the phyla Proteobacteria, Actinobacteriota, Firmicutes and Acidobacteriota 
(Figure 5A), and the genera Photobacterium, Vibrio, Catenococcus and Enterovibrio (Figure 
5B). 
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3.1.5. Core of the Bacterial Community

The core corresponded to those bacterial taxa showing a prevalence greater than 70%
and a minimum detection threshold of 0.1% in all analyzed cobia. The bacterial core was
composed of the phyla Proteobacteria, Actinobacteriota, Firmicutes and Acidobacteriota
(Figure 5A), and the genera Photobacterium, Vibrio, Catenococcus and Enterovibrio (Figure 5B).
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3.2. Fungal Community Composition

A total of 664,963 clean reads and 6036 ASVs were obtained, of which 1016 (16.83%)
were correctly assigned to phylum and 396 (6.56%) to genus. Twelve samples were pro-
cessed and rarefied to 1928 reads (Supplementary Figure S2). After rarefaction, abundance
and biodiversity were determined in 23,136 reads and 763 ASVs. Seven phyla and 85 genera
were identified.

3.2.1. Effect of Diet on Alpha Diversity (Primary Outcome)

Five alpha diversity indices were calculated and no significant differences between
groups were found (Table 2): Chao1 index of 68.22 ± 22.46, Richness of 63.58 ± 19.08,
Simpson index of 0.91 ± 0.08, Inverse Simpson of 15.98 ± 8.85, Shannon index of 3.15 ±
0.55 and ACE index of 67.60 ± 21.53.

Table 2. Alpha diversity indices of cobia intestinal fungal communities. Diets: FF, formulated feed;
and FFP, frozen fish pieces. Mean ± standard deviation.

Index
Diet p-Value

FF FFP

Chao1 68.29 ± 30.50 68.14 ± 13.39 0.148
Richness 62.33 ± 25.70 64.83 ± 11.69 0.109
Simpson 0.89 ± 0.11 0.92 ± 0.03 0.872

Inv. Simpson 16.55 ± 10.20 15.42 ± 8.22 0.336
Shannon 3.07 ± 0.75 3.22 ± 0.31 1.000

ACE 67.12 ± 28.92 68.09 ± 13.51 0.109

3.2.2. Effect of Diet on Beta Diversity

Beta diversity was used to analyze the structure of the intestinal fungal community
of cobia fed FF and FFP diets. PCoA analysis using unweighted and weighted Unifrac
distances showed no significant differences in the structure of the intestinal mycobiota of
cobia fed with FF and FFPs (Supplementary Figure S3).

3.2.3. Differential Abundances of Fungal Communities

The most abundant phyla identified in the intestinal mycobiota of cobia were Ascomy-
cota (FF = 89.32± 5.43% and FFPs = 86.68± 9.67%) and Basidiomycota (FF = 10.26 ± 5.47%
and FFPs = 12.60 ± 9.90%) (Figure 6A). Several ASVs were not assigned to a genus
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(FF = 41.98 ± 18.47% and FFPs = 59.12 ± 24.56%). Dominant genera were Debaryomyces
(FF = 20.55 ± 28.65% and FFPs = 6.61 ± 7.91%), Saccharomyces (FF = 6.47 ± 7.58% and
FFPs = 3.16 ± 2.23%), Ascobolus (FF = 7.29 ± 5.61% and FFPs = 1.75 ± 2.14%) and Cladospo-
rium (FF = 1.23 ± 1.11% and FFPs = 2.76 ± 1.86%) (Figure 6B). No significant difference
in the relative abundances of fungal taxa among phyla, classes or genera was detected in
the mycobiota of fish fed the two diets. The less abundant phyla and genera are shown in
Supplementary Table S4.
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Figure 6. Dominant mycobiota in the intestinal mucosa of cobia (Rachycentron canadum) fed formu-
lated feed (FF) or frozen fish pieces (FFP). (A) Relative abundance at the phylum level and (B) relative
abundance at the genus level. Fungal taxa in this figure had a prevalence and detection threshold
greater than 50% and 1%, respectively.

3.2.4. Core of the Mycobiota

The core mycobiota was determined using a minimum detection threshold of 0.1%
and a prevalence greater than 70% in all analyzed cobia. The core consisted of the phyla
Ascomycota and Basidiomycota (Figure 7A), and the genera Debaryomyces, Saccharomyces,
Ascobolus and Cladosporium (Figure 7B).
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that showed a relative abundance > 0.1% (dashed white line) and a prevalence > 70%.
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3.3. Correlation between Bacterial and Fungal Communities

Finally, we explored some associations between fungal and bacterial taxa in all an-
alyzed cobia. These results showed a significant positive correlation (p ≤ 0.05) between
54 fungal genera and at least one of the 96 bacterial genera (Supplementary Figure S4).
Although many genera were correlated, none belonged to the core microbiota of cobia gut.
Correlations among phyla were not significant.

4. Discussion

Studies on the fish microbiota have increased in recent years due to its importance
in host health, the advancement of sequencing technologies and the reduction in the
analysis costs. However, considering the huge diversity in fish species, there is still not
enough information about some fish species with aquaculture potential. In this study,
the autochthonous bacterial and fungal communities present in the intestinal mucosa of
cobia fed two diets (formulated feed (FF) or frozen fish pieces (FFPs)) were analyzed by
sequencing the 16S rRNA gene and ITS2, respectively. To the best of our knowledge, this is
the first study on the effect of diet on the microbiota of cobia reared in the eastern Pacific
and the first to describe the mycobiota of a marine fish.

4.1. Bacterial Community

Diet is one of the most important factors influencing the diversity and composition of
the bacterial community of the fish gut [42–47]. In this study, we compared the bacterial
communities of the guts of fish fed formulated feed (FF) or frozen fish pieces (FFPs).

We found no differences in alpha diversity between the groups using different diversity
indices. The richness (647.53± 136.09) was similar to that found in other studies performed
in juveniles (519 ± 17.24 [11], and 568.50 ± 151.44 [13]) and adults of cobia (506 [10]), and
almost double that reported for larvae (318 ± 73.73 [48]). This is consistent with increasing
diversity and richness as fish grow and develop [49]. The richness observed was lower
compared to other herbivore fish such as the genus Kyphosus [50], and slightly higher
compared to carnivorous fish such as yellowtail kingfish (Seriola lalandi) [51] and Atlantic
salmon (Salmo salar) [52]. This result is similar to a previous report; lower gut bacterial
diversity is generally observed in carnivores, and progressively increases in omnivores and
herbivores [53].

In contrast, beta diversity analysis using unweighted Unifrac distances showed that
the structure of the bacterial community was influenced by diet, meaning that the taxa
identified in the two groups were phylogenetically different.We found that fish fed formu-
lated feed were enriched in 10 genera; six of these belonged to the Firmicutes. In contrast,
fish fed the FFPs diet were enriched in 7 genera; five of them belonged to the phylum
Proteobacteria, abundant in marine wild fish [54,55]. Interestingly, several bacterial taxa
that were enriched in formulated feed (Oscillospiraceae, Faecalibacterium, Lachnospiraceae,
Christensenellaceae, Parabacteroides and Roseburia) produced short-chain fatty acids (SCFAs),
especially butyrate, which have shown several beneficial effects on the host [56]. These
SCFAs can be produced by the fermentation of dietary fiber. In our study, the formulated
diet provides 3% dietary fiber, which could be fermented to SCFAs. Unfortunately, the
content of dietary fibers of the frozen fish pieces was not determined, but dietary fiber did
not occur naturally in this animal-based feed [57].

Little is known about the variation in the gut microbiota structure between fresh/frozen
and dry/formulated diets, although fresh/frozen diets are still widely used for reared
marine fish in the reproductive phase, where the nutritional requirements remain a chal-
lenge [58]. Some studies have compared the gut bacterial community of wild and farmed
marine fish, i.e., live feed vs. formulated commercial feed, and found differences in the
bacterial composition [54,55,59]; however other environmental factors may explain the
observed differences. The FFPs (frozen fish pieces) diet used in this study consisted of
fresh fish frozen at −20 ◦C for a maximum of 15 days, then cut, thawed, and fed as a diet.
The freezing process was included to preserve the fish pieces, but we do not expect it to
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significantly alter their nutritional composition [60,61]. Freezing may inhibit the microbial
spoilage and affect the viability of some microorganisms present in fresh fish pieces [61];
however, this analysis was not performed in this study. Future studies could address this
issue and evaluate the effect of feed freezing on the gut microbiota of fish.

The phylum Proteobacteria dominated the bacterial community in all cobia fish which
was consistent with previous studies.Proteobacteria have been reported in larval [11,48],
juvenile [10,11,13] and adult [12] healthy cobia, and other tropical marine aquaculture
fish [62–64]. The most abundant genera were Photobacterium, Vibrio, Catenococcus and
Enterovibrio, independently of the diet. Other studies have shown that the most abundant
genera in the gut bacterial community of marine fish included Vibrio and Photobacterium [49].
The relative abundance of these genera has been associated with several benefits for the
health of fish and other commercially important marine organisms [65,66]. It is important
to note that some specific strains of these genera can act as pathogens, depending on their
virulence repertoire and the health status of the fish. In particular, pathogens belonging to
the genus Photobacterium have frequently been reported in cobia [67]. Some strains of the
genus Vibrio are the causative agents of the disease called “vibriosis” [68]. Unfortunately,
the sequencing of the 16S rRNA genes used in this study did not describe the pathogenic
potential of the identified taxa, which is a known limitation of this technique.

The core bacterial taxa of cobia consisted of Proteobacteria, Actinobacteriota, Firmi-
cutes and Acidobacteriota. The first three are the most abundant phyla identified in marine
fish [49]. Although Acidobacteriota were not very abundant in the cobia bacterial commu-
nities, their prevalence was higher than 80% in the fish studied. Although this phylum is
not often reported in a fish gut bacterial community, its relative abundance increased after
supplementation of golden pompano (Trachinotus ovatus) with dihydromyricetin (DMY)-Zn
(II) complex (50 mg kg feed−1). This additive is a bioactive flavonoid with beneficial effects
in humans and animals, showing antioxidant, anti-inflammatory, anticancer, antidiabetic,
antimicrobial and neuroprotective activities [69]. Most iron-reducing bacteria belong to
the phyla Proteobacteria and Acidobacteriota, which may promote Zn utilization in the
intestine [69]. According to this, the phylum Acidobacteriota may play an important role in
cobia bacterial communities and fish health. It has been reported that abundance estimates
based on 16S rRNA sequence counts tend to underestimate the abundance of taxa with low
16S rRNA copy numbers, such as the phylum Acidobacteriota in soil samples [70], which
may explain the under-reporting of this phylum.

In this study, the abundances of bacterial functional pathways of the gut microbiota
of cobia were not affected by diets. The most abundant pathways were associated with
metabolism, environmental information processing and cellular processes. Although no
functional studies have been reported in cobia, similar functions have been inferred from
the gut bacterial communities of other marine fish [71,72].

4.2. Fungal Community

The mycobiota of the fish gut has been less studied compared to the bacterial com-
munity. Few fish mycobiota have been characterized using next-generation sequencing
(NGS), and they have only been studied in freshwater fish [20–23,73]. The mycobiota of
some marine fish have been studied using PCR-TTGE (temporal temperature gradient gel
electrophoresis) [14].

In this study, the mycobiota was less affected by the diet compared to the bacterial
community. This suggests that both microbial communities, despite sharing the same
intestinal mucosal habitat, may not share the same ecological niche. The mycobiota may
depend mostly on the nutrients present in the intestinal mucus, which has been shown to be
used by fungal gut microorganisms [74]. In addition, previous studies describing the alpha
diversity of the mucosal (autochthonous) microbiota (fungal and bacterial communities) is
consistent with previous studies indicating that this microbiota tends to be highly conserved
in response to dietary changes compared to the allochthonous microbiota [75].
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Diets did not affect the composition of the mycobiota in our study; however, it is
necessary to note that a high percentage of ASVs were not assigned taxonomically, which
could explain this result. Studies based on NGS, like this study, usually identify Ascomycota
as the dominant phylum in the gut mycobiota of fish, as has been reported [20–22,73].
Ascomycota and Basidiomycota have also been reported as the most abundant phyla in
the aquatic environment [76], which may explain their presence in the fish gut. It should
be noted that the presence of some opportunistic pathogenic fungi has been reported in
fish [77]. Fungal infections in fish are generally considered secondary to some other factor
or pathogen, a consequence of water quality problems, poor condition, trauma (rough
handling or aggression), bacterial diseases or parasites [78]. To date, they have not been
reported in cobia. Some opportunistic fungi belong to the genera Saprolegnia, Branchiomyces,
Achly and Aphanomyces of Phylum Oomycota [78].

Debaryomyces, Saccharomyces, Ascobolus and Cladosporium were the most abundant
genera of fungi. It should be noted that a large part of the reads could not be assigned to a
genus, as has been previously reported [20,21,23]. This could be due to the lack of studies
on mycobiota and the limited availability of databases [19]. Also, the number of sequences
in fungal databases is lower compared to bacterial databases [34,35].

Debaryomyces was the most abundant genus identified in this study. Debaryomyces
are ubiquitous in marine and other aquatic environments [79]. They are abundant in
the mycobiota of rohu (Labeo rohita) [22] and zebrafish (D. rerio) [21], and they have also
been identified as part of the core of several marine fish [14]. Several strains have been
isolated from fish intestines using culture methods, and some have been proposed as
potential probiotics for fish [15,16,24,25]. Saccharomyces is another genus frequently reported
in aquatic environments and has also been evaluated for its probiotic potential [80–82].
Ascobolus is a coprophilous genus [83] not previously reported in fish. This genus usually
lives on dung or rotting plant remains and has a worldwide distribution [84]. It has been
characterized as having asci with an operculum [85], whose ascospores pass intact through
animal alimentary canals and are often stimulated to germinate by this passage [84]. Further
studies are needed to explore the role of this genus in fish health.

We found that the cobia’s core mycobiota was dominated by Debaryomyces, Saccha-
romyces, Ascobolus and Cladosporium. As reported in other studies, Debaryomyces and
Saccharomyces are members of the abundant mycobiota of fish [14,21]. Ascobolus showed
low abundance (4.52 ± 4.97%) but was present in 91.67% of the samples, with a prevalence
similar to that of Cladosporium, which had an abundance of 1.99 ± 1.66%. In contrast to
Ascobolus, Cladosporium has previously been reported in fish such as tilapia (O. mossambicus)
and bighead carp (A. nobilis) [23], but not as part of the core mycobiota. More studies are
needed to disentangle the role of these fungi in fish health.

4.3. Correlation between Bacterial and Fungal Communities

Studies in humans and mice in recent decades have explored the specific cross-
kingdom interactions between fungi and bacteria, showing that this relationship can be
antagonistic, pathogenic or protective [86]. Studies in fish have shown a protective effect of
some yeast isolates against bacterial pathogens, as described above. However, this was the
first study exploring the association between the whole fungal and bacterial communities
within the intestinal mucosa of fish using next-generation sequencing. We have detected
many significant associations between genera, although these taxa do not belong to the
core microbiota. Consequently, future studies are needed to disentangle the role of these
interactions in fish intestinal homeostasis and health.

5. Conclusions

No significant differences were observed in the alpha diversity of the autochthonous
bacterial and fungal communities present in the intestinal mucosa of cobia fed two dif-
ferent diets. However, some differences in the structure of the bacterial community were
detected between diets. No differences were detected in the inferred functional capacity
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of the bacterial community. Interestingly, we identified Ascobolus, which has never been
reported in fish guts. This study may help us to define a baseline for new research in
cobia. Considering that our microbial identification and function inference were based on
high-throughput DNA sequencing, further studies are needed to confirm these results with
qPCR or culture methods to isolate these microorganisms and explore their functions and
effects on fish health.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms11092315/s1: Supplementary Table S1: Fish
diet compositions; Supplementary Table S2: Fish sampled for the microbiota study; Supplementary
Table S3: Bacterial counts and relative abundance. Phyla included in this table had a prevalence and
detection threshold greater than 90% and 0.05%, respectively. Genera included in this table had a
prevalence and detection threshold greater than 95% and 0.05%, respectively; Supplementary Table S4:
Fungal counts and relative abundance. All phyla were included in this table. Genera included had
a prevalence and detection threshold greater than 70% and 0.5%, respectively; Supplementary
Figure S1: Rarefaction curves showing the richness of the bacterial communities in the gut of cobia
(Rachycentron canadum) fed with FF, formulated feed (blue line), and FFP, frozen fish pieces (red line);
Supplementary Figure S2: Rarefaction curve showing the richness of the mycobiota in the gut of cobia
(Rachycentron canadum) fed with FF, formulated feed (blue line), and FFP, frozen fish pieces (red line);
Supplementary Figure S3: PCoA analysis of cobia (Rachycentron canadum) intestinal mycobiota fed
with formulated feed (FF) and frozen fish pieces (FFP) using ASVs. (A) Unweighted Unifrac distance,
non-significant distance between groups (p = 0.804), where the principal components explain 14.5
and 12.7% of data variance; and (B) weighted Unifrac distance, non-significant distance between
groups (p = 0.575), where the principal components explain 42.1 and 20.3% of data variance. The
ellipses represent 95% confidence level groups for a multivariate normal distribution; Supplementary
Figure S4: Heatmap of Spearman’s correlation (p ≤ 0.05) between the abundance of genera belonging
to fungal and bacterial communities of cobia (Rachycentron canadum). Crosses indicate significant
correlations; Supplementary Figure S5: ASV accumulation curves with sample size per treatment,
showing the extent to which each additional sample increases total number of ASVs detected per
treatment for (A) bacterial and (B) fungal communities of cobia (Rachycentron canadum). Horizontal
dotted lines indicate the asymptote of the curve.
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