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Abstract: High ethanol consumption triggers neuroinflammation, implicated in sustaining chronic
alcohol use. This inflammation boosts glutamate, prompting dopamine release in reward centers,
driving prolonged drinking and relapse. Fibrate drugs, activating peroxisome proliferator-activated
receptor alpha (PPAR-α), counteract neuroinflammation in other contexts, prompting investigation
into their impact on ethanol-induced inflammation. Here, we studied, in UChB drinker rats, whether
the administration of fenofibrate in the withdrawal stage after chronic ethanol consumption reduces
voluntary intake when alcohol is offered again to the animals (relapse-type drinking). Furthermore,
we determined if fenofibrate was able to decrease ethanol-induced neuroinflammation and oxidative
stress in the brain. Animals treated with fenofibrate decreased alcohol consumption by 80% during
post-abstinence relapse. Furthermore, fenofibrate decreased the expression of the proinflammatory
cytokines tumor necrosis factor-alpha (TNF-α) and interleukins IL-1β and IL-6, and of an oxidative
stress-induced gene (heme oxygenase-1), in the hippocampus, nucleus accumbens, and prefrontal cor-
tex. Animals treated with fenofibrate showed an increase M2-type microglia (with anti-inflammatory
proprieties) and a decrease in phagocytic microglia in the hippocampus. A PPAR-α antagonist
(GW6471) abrogated the effects of fenofibrate, indicating that they are dependent on PPAR-α activa-
tion. These findings highlight the potential of fenofibrate, an FDA-approved dyslipidemia medication,
as a supplementary approach to alleviating relapse severity in individuals with alcohol use disorder
(AUD) during withdrawal.

Keywords: alcohol use disorder; alcoholism; fibrates; neuroinflammation; PPAR alpha

1. Introduction

Alcohol use disorder (AUD) remains a significant public health concern, with available
pharmacological interventions such as naltrexone and acamprosate, which primarily target
reducing alcohol craving, help maintain abstinence, and reduce harmful drinking in the
treatment phase of psychological dependence. However, they often fall short in providing
sustained recovery, as most patients experience relapse in the short or middle term [1,2].
Throughout the detoxification phase, patients are typically prescribed benzodiazepines,
such as diazepam, to alleviate symptoms of alcohol withdrawal syndrome [3]; however,
their usage in cases of AUD should be limited to short durations due to the potential of
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substituting alcohol addiction with benzodiazepine dependence. Prolonged and exces-
sive alcohol consumption leads to enduring changes in the brain, perpetuating addictive
behavior in individuals with AUD. Ethanol-induced neuroinflammation in the brain has
emerged as a pivotal factor in the neurobiological changes associated with persistent
chronic alcohol abuse [4–6].

Neuroinflammation associated with ethanol consumption can be induced by two mech-
anisms: one of them involves the oxidation of ethanol by cytochrome P4502E1 (CYP2E1),
generating reactive oxygen species (ROS) that activate nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), leading to pro-inflammatory responses [7,8]. This
activation also increases the expression of NADPH oxidase [9], which generates even
more ROS, perpetuating the inflammatory response [5,6]. The second mechanism involves
the activation of tumor necrosis factor-alpha (TNF-α) receptor in the brain, since ethanol
consumption increases the permeability of the intestinal mucosa, which allows bacterial
lipopolysaccharide (LPS) to diffuse into circulation [10]. LPS then triggers the release of
TNF-α to the blood, which can cross the blood–brain barrier and activate microglial TNF
receptors, inducing neuroinflammation [11,12]. The activation of either mechanism leads
to the release of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 [13]. This
glial-secreted TNF-α then binds to its TNF receptor in the same microglial cells, creat-
ing an activation loop that potentiates the initial neuroinflammation response [5]. The
self-perpetuating positive feedback loops created by these mechanisms can maintain neu-
roinflammation for months after alcohol withdrawal, which increases the risk of relapse [9].

The establishment of alcohol addiction is a complex process, where the modulation
of dopamine release in the brain’s reward pathways plays a central role. This modu-
lation involves interactions between various neurotransmitters’ pathways, including γ-
aminobutyric acid (GABA) and glutamate. Both neurotransmitters modulate dopamine
release in the nucleus accumbens in response to ethanol. Activation of presynaptic GABA
receptors by ethanol inhibits GABA release in the ventral tegmental area (VTA), which
in turn stimulates dopamine release in the nucleus accumbens [14]. Dopamine release is
closely linked to the motivational effects of alcohol, that is, to the positive reinforcement in-
volved in the reward. However, a second behavioral aspect of AUD is negative reinforcing
features such as hyper-anxious and hyperexcitability states, which lead the individual to
continue drinking to obtain relief from this negative affective state associated with alcohol
dependence. GABAergic mechanisms have been implicated in the neuroadaptations associ-
ated with the transition in humans from limited access to ethanol to chronic drinking [15].
Studies with pharmacological agonists and antagonists have implicated GABA systems in
the anxiogenic effects of ethanol withdrawal, since GABA agonists decrease central nervous
system hyperexcitability during ethanol withdrawal, whereas GABA antagonists exacer-
bate many of the symptoms of ethanol withdrawal [15]. Although there are no studies that
demonstrate the direct relationship between ethanol-induced neuroinflammation and anx-
iogenic effects, studies have shown that the state of anxiety could be related to the release
of proinflammatory cytokines [16]. Involvement of proinflammatory cytokines in anxiety
has been demonstrated in transgenic mice lacking TNF-α receptors [17] and transgenic
mice lacking IL-1β receptors [18]. In these animal models, the level of anxiety was found to
be lower than that in the wild-type mice [17,18]. However, the involvement of GABAergic
systems in anxiety triggered by neuroinflammation has not yet been demonstrated.

On the other hand, glutamate is a neurotransmitter strongly linked to the maintenance
of chronic ethanol intake and relapse to alcohol and other substances of abuse [19]. Ethanol-
induced neuroinflammation plays a pivotal role in heightening glutamatergic activity in
the brain [20]. Ethanol is known to increase the extracellular glutamate levels within
mesocorticolimbic structures. In AUD individuals, astrocytes exhibit modified glutamate,
clearance due to the inadequate functioning of the brain’s glutamate transporter 1 (GLT-1),
also recognized as excitatory amino acid transporter 2 (EAAT2) or solute carrier family
1 member 2 (SLC1A2). This irregularity results in an increase in extracellular glutamate
levels at the tripartite synapse [21]. Following chronic ethanol consumption and subsequent
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abstinence, environmental cues associated with alcohol usage can trigger drug-seeking
behavior and the urge to re-administer the substance, leading to relapse and the perpet-
uation of alcohol intake [22]. This behavior cycle is powered by an amplified glutamate
release into the nucleus accumbens through intricate circuit connecting hippocampus and
prefrontal cortex [20].

Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor with
key functions in lipid metabolism [23]. Fibrate drugs such as fenofibrate, bezafibrate,
gemfibrozil, ciprofibrate, and clofibrate are PPAR-α agonists [24], actively elevating the
oxidation rate of fatty acids, and are commonly employed to treat hypertriglyceridemia [25].
Several studies have shown that fenofibrate administration to rodents that consume alcohol
voluntarily leads to a reduction in alcohol intake [26–31]. Since PPAR-α activation in the
brain decreases neuroinflammation [32–36], we hypothesized that fenofibrate exerts an anti-
inflammatory effect even when administered only during the abstinence period following
chronic alcohol intake. In line with this hypothesis, a previous study by our group reported
that the administration of fenofibrate during the abstinence period following chronic alcohol
consumption in rats was able to (i) reverse the ethanol-induced increase in glial acidic
fibrillary protein (GFAP) levels, indicative of astrogliosis, (ii) decrease the deactivation
of the NF-κB inhibitor (IκBα), and (iii) restore the diminished expression levels of GLT-1
caused by alcohol treatment [37].

In this study, our primary objective was to examine the potential effects of fenofibrate
when administered exclusively during the abstinence stage following chronic alcohol
consumption in rats, specifically focusing on its impact on alcohol intake in a relapse
model. Additionally, we sought to evaluate the influence of fenofibrate administration
during abstinence on the expression of proinflammatory cytokines, markers of oxidative
stress in the brain, and the activation of microglia. We aimed to contribute to a deeper
understanding of the potential therapeutic advantages that fenofibrate might offer in the
management of alcohol use disorder and the corresponding neurobiological alterations.

2. Materials and Methods
2.1. Animals and Treatments

High-drinker UChB (University of Chile Bibulous) rats derived from the Wistar strain
and bred selectively for their high alcohol intake [38] were used. Two-month-old female
rats were housed in individual cages in temperature-controlled rooms under a regular
12-hour light/12-hour dark cycle (a total of 30 animals). For 46 days, rats were offered a
free choice between 10% (v/v) ethanol solution and water. On day 47, rats were allowed
concurrent three-bottle choice access to 10% and 20% (v/v) ethanol solutions and water for
14 additional days. This protocol was routinely adopted by our group, since, in a previous
study, we observed that simultaneous access to 10% and 20% ethanol allowed the detection
of a more marked effect in relapse-type alcohol consumption [39]. Food (Mardones rat
formula, Alimentos Cisternas, Santiago, Chile) and water were always provided ad libitum,
and the volume of water and ethanol was recorded daily. After these 60 days of alcohol
consumption, the weight of the animals averaged 242.1 ± 18.9 g. The decision to utilize
female rats in this study stems from compelling evidence in specific rat lines, such as
high-alcohol-drinking-2 (HAD-2), and Sardinian alcohol-preferring (sP) lines, which were
selectively bred for their elevated ethanol consumption. In these lines, females consistently
demonstrated higher levels of ethanol consumption compared to males [40,41]. This pattern
is found as well in the UChB rat line (unpublished results). Furthermore, the choice of
female rats is supported by their relatively more stable body weight during the 2–3-month
duration of the experiments conducted in this study.

After 60 days of continuous free choice between ethanol and water, animals were
divided into 4 groups (n = 7 for groups I and IV, n = 8 for groups II and III, see below)
and deprived of ethanol access for 14 days, keeping water and food consumption ad
libitum. In the last five days of ethanol withdrawal, the four groups were, respectively,
administered a daily dose of: Group I, Vehicle control: dimethyl sulfoxide (DMSO), i.p.,
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plus water by gavage, which are the vehicles of GW6471 and of fenofibrate, respectively;
Group II, Fenofibrate: micronized fenofibrate (Fibronil®, Royal Pharma, Santiago, Chile)
50 mg/kg/day per gavage, re-suspended in water (1 mL per each 150 g of body weight) [27]
plus DMSO i.p. vehicle; Group III, Fenofibrate: 50 mg/kg/day + GW6471 1 mg/kg/day
i.p. (a PPAR-α specific antagonist, MyBioSource, San Diego, CA, USA), dissolved in DMSO
(0.1 mL per 100 g body weight) [42]; and Group IV, GW6471: 1 mg/kg/day i.p. plus water
vehicle per gavage.

On day 75, after finishing the 14 days of abstinence (which included the 5 days of drug
treatment), the animals were offered the 10% and 20% (v/v) ethanol solutions again for just
1 h, and the consumed volume was recorded.

Immediately after recording alcohol consumption during 1 h re-access, the animals
were anesthetized with ketamine/xylazine (10:1 mg/kg of body weight, i.p.) and immedi-
ately decapitated to obtain brains samples.

2.2. Quantification of the Expression of Proinflammatory Cytokines and Oxidative Stress Markers

From one of the cerebral hemispheres, hippocampus, nucleus accumbens, and pre-
frontal cortex tissues were extracted and homogenized in RNA-Solv® Reagent (Omega
Bio-tek, Inc., Norcross, GA, USA) with a mini Potter–Elvehjem pestle (Sigma-Aldrich,
St. Louis, MO, USA). Total RNA was purified according to the manufacturer’s instruc-
tions. For RT-qPCR analysis, 300 ng of RNA was treated with DNase I (New England
Biolabs, Ipswich, MA, USA) and subjected to amplification by RT-qPCR using the follow-
ing primers: TNF-α (forward) CAGCCGATTTGCCACTTCATA, TNF-α (reverse) TCCT-
TAGGGCAAGGGCTCTT, IL1-β (forward) AGGCTTCCTTGTGCAAGTGT, IL1-β (reverse)
TGTCGAGATGCTGCTGTGAG, IL6 (forward) CCCAACTTCCAATGCTCTCCTAATG,
IL6 (reverse) GCACACTAGGTTTGCCGAGTAGACC, β-Actin (forward) CTTGCAGCTC-
CTCCGTCGCC β-Actin (reverse) CTTGCTCTGGGCCTCGTCGC, HO-1 (forward) TCGA-
CAACCCCACCAAGTTC, HO-1 (reverse) AGGTAGTATCTTGAACCAGGCT.

The corresponding GenBank accession numbers are: TNF-α X66539.1; IL1-β NM_031512.2;
IL6 NM_012589.2; β-Actin NM_031144.3; HO-1 NM_012580.2.

2.3. Determination of Oxidized Glutathione (GSSG) and Reduced Glutathione (GSH) Levels

A portion of the hippocampus was reserved for the determination of oxidized glu-
tathione (GSSG) and reduced glutathione (GSH) levels using the GSH/GSSG Ratio Detec-
tion Assay Kit II (Abcam, Boston, MA, USA), following the manufacturer’s instructions.
Briefly, tissue samples were homogenized in ice-cold PBS/0.5% NP-40 with a mini Potter–
Elvehjem pestle ((Sigma-Aldrich, St. Louis, MO, USA).), centrifuged for cell debris removal,
and deproteinized to remove enzymes that could potentially metabolize glutathione (De-
proteinizing Sample Preparation Kit—TCA, Abcam, Boston, MA, USA).

2.4. Determination of Microglia Immunoreactivity

The other cerebral hemisphere was used for immunofluorescence against the mi-
croglial marker ionized calcium-binding adaptor molecule 1 (Iba-1, 019-19741, Wako
Chemicals, Richmond, VA, USA, 1:400 dilution) in coronal cryosections of the hippocam-
pus (30 µm thick) as previously reported [43]. Nuclei were labeled with 4,6 diamino-2-
phenylindol (DAPI), 0.02 M; 0.0125 mg/mL for nuclear labelling (Invitrogen, Carlsbad,
CA, USA). Microphotographs were taken from the stratum radiatum of the hippocampus
using a confocal microscope (Zeiss, LMS700, Oberkochen, Germany). The area analyzed
for each stack was 0.04 mm2, and the thickness (z-axis) was measured for each case. The
density of Iba-1-positive microglial cells was assessed using FIJI Image J analysis software
(https://imagej.net/ij/, accessed on 6 September 2023) as previously reported [43].

https://imagej.net/ij/
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2.5. Statistical Analyses

Statistical analyses were performed using GraphPad Prism 8. Data are expressed as
means ± SEM. One-way or two-way ANOVA followed by Tukey’s post hoc analysis was
used. A level of p < 0.05 was considered for statistical significance.

3. Results
3.1. Effect of Fenofibrate on Relapse-like Alcohol Consumption

Over a span of 60 days, voluntary alcohol consumption was tracked within the
four experimental groups. As shown in Figure 1 (left side), alcohol consumption in-
creased from 7.6 ± 1.5 g/kg/day on day 1 (10% ethanol solution) until stabilizing at
13.86 ± 1.19 g/kg/day between days 47 and 60 (10% plus 20% ethanol solutions). Of
this cumulative ethanol consumption, an average of 65% was attributed to the 10% ethanol
solution bottle, while the remaining 35% was derived from the 20% ethanol solution bottle
(data not presented in Figure 1 left). No significant differences were detected among the
four groups (ANOVA F(3,1586) = 1.023; p = 0.3816).
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Figure 1. Fenofibrate administration during the ethanol withdrawal stage reduces alcohol relapse-like
drinking. Following 46 days of chronic 10% (v/v) ethanol intake and then concurrent three-bottle
choice access to 10% and 20% (v/v) ethanol solutions and water for 14 additional days, rats were
deprived of ethanol for 14 days. In the last 5 days of deprivation, 4 groups were, respectively, treated
with a daily dose of: (i) vehicle control (DMSO + water); (ii) fenofibrate 50 mg/kg/day + DMSO;
(iii) fenofibrate 50 mg/kg/day plus GW6471 1 mg/kg/day; and (iv) GW6471 1 mg/kg/day + water.
The day after finishing the 14 days of abstinence (which includes the 5 days of drug treatment), the
animals were offered the 10% and 20% (v/v) ethanol solutions again for just 1 h, and the consumed
volume was recorded. Hatched pattern in bars represents the amount of 20% ethanol ingested, while
the filled pattern represents the amount of 10% ethanol; the total height of the bars and the standard
errors shown correspond to the total amounts of alcohol consumed. Data are presented as mean
± SEM, n = 7–8 rats per experimental group. *** = p < 0.001 vs. Vehicle and Fenofibrate/GW6471
groups. ANOVA followed by Tukey’s test for multiple comparisons.

Following this period, the animals were deprived of alcohol for 14 days. In the last five
days of the withdrawal period, the four groups were, respectively, treated with: (i) vehicles
(DMSO i.p. and water gavage); (ii) fenofibrate 50 mg/kg/day per gavage + DMSO,
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(iii) fenofibrate 50 mg/kg/day by gavage plus GW6471 1 mg/kg/day i.p. (a PPAR-α spe-
cific antagonist); (iv) GW6471 1 mg/kg/day i.p. + water. GW6471 is a specific PPAR-α
antagonist, with capacity to counteract the protective effects of PPAR-α on neuroinflam-
mation [44]. As shown in Figure 1 (right side), the administration of fenofibrate in the
withdrawal stage produced an 80% decrease in total voluntary alcohol consumption during
the sole hour of re-access to alcohol. This reduction was markedly different from the control
group, which solely received the vehicles (0.38 ± 0.13 g/kg/1 h vs. 1.82 ± 0.28 g/kg/1 h;
ANOVA F(3,26) = 15.47; p < 0.001). When fenofibrate was administered simultaneously with
GW6471, the decrease in alcohol consumption during relapse was abrogated, since no sig-
nificant differences were observed when compared to the control group that solely received
the vehicles (1.31 ± 0.13 g/kg/1 h vs. 1.82 ± 0.28 g/kg/1 h; ANOVA p = 0.2030). Similarly,
the administration of GW6471 alone also yielded no significant effect on alcohol consump-
tion when compared to the control group (1.53 ± 0.16 g/kg/1 h vs. 1.82 ± 0.28 g/kg/1 h;
ANOVA p = 0.6788). These findings provide strong evidence that the effect of fenofibrate
on alcohol consumption during relapse is specifically due to PPAR-α activation.

Regardless of the total amount of alcohol ingested among the four groups, the ratio
between 10% ethanol and 20% ethanol consumption during relapse remained statistically
unchanged from that observed during the chronic consumption stage (vehicle group:
67%/33%; fenofibrate group: 66%/34%, fenofibrate+GW6471 group: 70%/30%, GW6471
group: 70%/30%), indicating that the different treatments did not change the preference
for ethanol concentration in the ingested solution.

3.2. Effect of Fenofibrate on Ethanol-Induced Expression of Proinflammatory Cytokines and an
Oxidative Stress Marker

In a previous study, we had reported the effectiveness of fenofibrate in reversing
ethanol-induced increase in GFAP expression, and NF-κB activation in the hippocampus,
prefrontal cortex, and the hypothalamus [37]. These findings align with fenofibrate´s
propriety in inhibiting neuroinflammation in contexts beyond alcohol exposure, including
aging, ischemia/reperfusion injury, and traumatic brain injury [32–36]. In our current
investigation, we explored the ability of fenofibrate to counteract an increase in proinflam-
matory cytokines and a marker of oxidative stress, both induced by alcohol consumption.
To quantify these effects, the expression of three well-known proinflammatory cytokines
(TNF-α, IL1-β, and IL-6) as well as the expression of heme oxygenase-1 (HO-1), a gene that is
induced in response to oxidative stress [44] was quantified by RT-qPCR in the hippocampus,
nucleus accumbens (NAcc), and prefrontal cortex (PFC).

As shown in Figure 2a–c, fenofibrate was able to decrease mRNA TNF-α expression
in the hippocampus (fenofibrate vs. vehicle: 26.7 ± 1.5% vs. 100.0 ± 17.8%; ANOVA
F(3,26) = 28.0; p < 0.01), NAcc (6.2 ± 0.9% vs. 100.0 ± 23.7%; ANOVA F(3,26) = 80.2; p < 0.01),
and PFC (16.3 ± 0.3% vs. 100.0 ± 23.7%; ANOVA F(3,26) = 12.0; p < 0.01). Fenofibrate was
also able to decrease the mRNA expression of IL-β in the hippocampus (fenofibrate vs.
vehicle: 30.3 ± 3.5% vs. 100.0 ± 11.5%; ANOVA F(3,26) = 32.9; p < 0.01), NAcc (7.8 ± 1.3%
vs. 100.0 ± 25.1%; ANOVA F(3,26) = 53.0; p < 0.01), and PFC (40.2 ± 7.8% vs. 100.0 ± 18.9%;
ANOVA F(3,26) = 11.0; p < 0.05). Similar results were observed regarding the mRNA
expression of IL-6, since fenofibrate showed effects in the hippocampus (fenofibrate vs.
vehicle: 16.8 ± 1.1% vs. 100.0 ± 13.2%; ANOVA F(3,26) = 46.2; p < 0.01) and NAcc (0.0 ± 0.0%
vs. 100.0 ± 33.1%; ANOVA F(3,26) = 12.0; p < 0.01). In the case of PFC, although there
was a decrease, it was, albeit marginally, not statistically significant (63.6 ± 15.0% vs.
100.0 ± 17.3%; ANOVA F(3,26) = 2.6; p = 0.07). Regarding the oxidative stress marker gene
HO-1, the administration of fenofibrate showed marked effects in reducing its expression
in the hippocampus (fenofibrate vs. vehicle: 27.7 ± 1.3% vs. 100.0 ± 9.4%; ANOVA
F(3,26) = 18.0; p < 0.01), NAcc (11.0 ± 0.6% vs. 100.0 ± 19.2%; ANOVA F(3,26) = 43.7; p < 0.01),
and PFC (42.8 ± 3.2% vs. 100.0 ± 11.7%; ANOVA F(3,26) = 9.0; p < 0.05), which would
indicate its ability to reduce not only neuroinflammation but also ethanol-induced oxidative
stress in these brain areas.
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Figure 2. Fenofibrate administration during the ethanol withdrawal stage reduces the expression
of proinflammatory cytokines and the marker of oxidative stress. Following the experiment shown
in Figure 1, the expression of TNF-α, IL-1β, IL-6, and HO-1 in the hippocampus (a), NAcc (b), and
PFC (c) was analyzed by RT-qPCR in the 4 groups of animals, treated, respectively, with: (i) vehicle
control (DMSO + water); (ii) fenofibrate 50 mg/kg/day + DMSO; (iii) fenofibrate 50 mg/kg/day
plus GW6471 1 mg/kg/day; and (iv) GW6471 1 mg/kg/day + water. The graphs show the levels
of gene expression as percentages of their vehicle-administered controls, normalized by the levels
of expression of ß-actin. Data are presented as mean ± SEM, n = 7–8 rats per experimental group.
* = p < 0.05, ** = p < 0.01, *** = p < 0.001 between the indicated groups. ANOVA followed by Tukey’s
test for multiple comparisons.

The co-administration of the antagonist GW6471 and fenofibrate abrogated the effect of
the latter as in alcohol consumption during relapse (Figure 1), further reinforcing the notion
that the reduced expression of proinflammatory cytokines and the oxidative stress marker
is explicitly attributed to PPAR-α activation (Figure 2). [Fenofibrate + GW6471 vs. fenofi-
brate, TNF-α: hippocampus 113.0 ± 22.4% vs. 26.7 ± 1.5% ANOVA F(3,26) = 28.0; p < 0.01;
NAcc 88.7 ± 13.2% vs. 6.2 ± 0.9% ANOVA F(3,26) = 80.2; p < 0.01; PFC 106.5 ± 10.5%
vs. 16.3 ± 0.3% ANOVA F(3,26) = 12.0; p < 0.01; IL-1β: hippocampus 58.5 ± 4.7% vs.
30.3 ± 3.5% ANOVA F(3,26) = 32.9; p < 0.05; NAcc (40.9 ± 7.4% vs. 7.8 ± 1.3%; ANOVA
F(3,26) = 53.0; p < 0.05); PFC 98.3 ± 1.0% vs. 40.2 ± 7.8%; ANOVA F(3,26) = 11.0; p < 0.05;
IL-6: hippocampus 63.2 ± 7.2% vs. 16.8 ± 1.1% ANOVA F(3,26) = 46.2; p < 0.01; NAcc
0.0 ± 0.0% vs. 0.0 ± 0.0% ANOVA F(3,26) = 12.0, n.s.; PFC 77.9 ± 2.1% vs. 63.6 ± 15.0%
ANOVA F(3,26) = 2.6; p = 0.07; HO-1: hippocampus 53.7 ± 4.4% vs. 27.7 ± 1.3%; ANOVA
F(3,26) = 18.0; p < 0.05; NAcc (132.8 ± 45.9% vs. 11.0 ± 0.6%; ANOVA F(3,26) = 43.7; p < 0.05;
PFC 80.3 ± 2.5% vs. 42.8 ± 3.2% ANOVA F(3,26) = 9.0; p < 0.05].

Notably, in the group administered only with the antagonist GW6471, a marked in-
crease in all proinflammatory cytokines evaluated and in the marker of oxidative stress was
detected, approximately between 3- and 13-fold in the hippocampus and NAcc (Figure 2)
[GW6471 vs. vehicle, TNF-α: hippocampus 515.3 ± 98.1% vs. 100.0 ± 17.8% ANOVA
F(3,26) = 28.0; p < 0.001; NAcc 466.7 ± 57.9% vs. 100.0 ± 23.7% ANOVA F(3,26) = 80.1;
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p < 0.001; IL-1β: hippocampus 304.5 ± 58.6% vs. 100.0 ± 11.5%; ANOVA F(3,26) = 32.9;
p < 0.001; NAcc (452.9 ± 73.7% vs. 100.0 ± 25.1%; ANOVA F(3,26) = 53.0; p < 0.001); IL-6:
hippocampus 528.0 ± 85.5% vs. 100.0 ± 13.2%; ANOVA F(3,26) = 46.2; p < 0.01; NAcc
267.2 ± 57.4% vs. 100.0 ± 33.1%; ANOVA F(3,26) = 12.0; p < 0.001; HO-1: hippocampus
831.0 ± 79.3% vs. 100.0 ± 9.4%; ANOVA F(3,26) = 18.0; p < 0.001; NAcc (1318.7 ± 296.5% vs.
100.0 ± 19.2%; ANOVA F(3,26) = 43.7; p < 0.001)].

3.3. Effect of Fenofibrate on the Levels of the Antioxidant Glutathione

Figure 3 shows that the administration of fenofibrate decreased the oxidized glu-
tathione/reduced the glutathione ratio (GSSG/GSH) in the hippocampus (fenofibrate
vs. vehicle: 81.4 ± 2.5% vs. 100.0 ± 3.1%, ANOVA F(3,26) = 41.3; p < 0.01). Like what
was observed with the expression of proinflammatory cytokines and HO-1 (Figure 2),
co-administration of the antagonist GW6471 decreased the protective effect of fenofibrate
against oxidative stress (fenofibrate+GW6471 vs. fenofibrate: 130.6 ± 4.2% vs. 100.0 ± 3.1%,
ANOVA F(3,26) = 41.3; p < 0.001). Furthermore, administration of GW6471 alone produced
per se an increase in oxidative stress in the hippocampus (GW6471 vs. vehicle: 118.4 ± 3.7%
vs. 100.0 ± 3.1% ANOVA F(3,26) = 41.3; p < 0.01). These findings indicate that fenofibrate
can reduce not only neuroinflammation, but also oxidative stress levels in this brain area,
which is consistent with the decrease in HO-1 expression levels (Figure 2a), together with
the decrease in the relapse-like alcohol intake (Figure 1).
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Figure 3. The administration of fenofibrate reduces the oxidative stress induced by ethanol. Oxidized
glutathione (GSSG) and reduced glutathione (GSH) levels were determined in the hippocampus
of the 4 groups of treated animals. The graph shows the GSSG/GSH ratios as percentages of their
vehicle-administered controls. Data are presented as mean ± SEM, n = 7–8 rats per experimental
group. ** = p < 0.01 and *** = p < 0.001 between the indicated groups. ANOVA followed by Tukey’s
test as a post hoc.

Similar to what was observed with the expression of proinflammatory cytokines and
with the oxidative stress-induced gene (HO-1) in the hippocampus and NAcc (Figure 2),
the administration of the antagonist GW6471, either in conjunction with fenofibrate or
alone, produced a 30.6% and 18.4% increase in oxidative stress levels in the hippocampus,
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respectively (fenofibrate+GW6471 vs. vehicle: 130.6 ± 4.2% vs. 100.0 ± 3.1%, GW6471 vs.
vehicle: 118.4 ± 3.6% vs. 100.0 ± 3.1%, ANOVA F(3,26) = 41.3; p < 0.01).

3.4. Effect of Fenofibrate on Ethanol-Induced Microglial Reactivity

Regarding microglia reactivity, while not reaching statistical significance, fenofibrate
showed a trend towards doubling the number of cells displaying an anti-inflammatory
morphology (M2) in comparison to the vehicle group (Figure 4) (fenofibrate vs. vehicle:
1633 ± 375 vs. 823 ± 234, ANOVA F(3,86) = 1.76; p = 0.16). In addition, the co-administration
of the antagonist GW6471 together with fenofibrate attenuated the effect of the latter on
the increase in the number of M2 microglial cells (fenofibrate+GW6471 vs. fenofibrate:
1266 ± 235 vs. 1633 ± 375, ANOVA F(3,86) = 1.76; p = 0.16).
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Figure 4. Effect of fenofibrate administration on microglial reactivity. The cells with the M2 (anti-
inflammatory) phenotype were quantified in the hippocampus of the 4 groups of treated animals.
(a) Representative microphotograph of microglia immunofluorescence (IBA-1 immunoreactivity:
green; DAPI: blue) from the four experimental groups. Scale bar 20 µm. The arrows show an example
of the morphology of the cells that were counted. (b) Densitometric analysis from Iba-1-positive
cells/mm3 present in 3 hippocampal slices from each animal. Data are presented as mean ± SEM,
n = 7–8 rats per experimental group. ANOVA followed by Tukey’s test as a post hoc.

We also quantified phagocytic microglial cells in the hippocampus. Phagocytic mi-
croglia are characterized by rounded macrophage-like morphology with no or few pro-
cesses and are associated with maximal proinflammatory activation and oxidative-free
radicals [11]. The group of animals treated with fenofibrate showed a decrease of 30.4% with
respect to the control group, although the difference was statistically significant only when
compared with the fenofibrate+GW6471 group (ANOVA F(3,86) = 2.66 p < 0.05) (Figure 5).
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motivation of animals to obtain ethanol (operant self-administration) but not to self-
administer sucrose [30], which could indicate that there are no effects on memory or 
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Figure 5. Effect of fenofibrate administration on microglial reactivity. The microglial cells with
the phagocytic phenotype were quantified in the hippocampus of the 4 groups of treated ani-
mals. (a) Microglia immunofluorescence (IBA-1 immunoreactivity: green; DAPI: blue). Scale bar
20 µm. The arrows show examples of the morphology of the microglial cells in phagocytic process.
(b) Densitometric analysis of microglial cells in the phagocytic process (phagocytic pouches). Data
are presented as mean ± SEM, n = 7–8 rats per experimental group. * = p < 0.05, between the indicated
groups. ANOVA followed by Tukey’s test as a post hoc.

4. Discussion

Due to the marked effect of fenofibrate in decreasing post-withdrawal relapse-type
alcohol consumption (Figure 1), it is reasonable to consider whether this could be attributed
to effects that extend beyond the inhibition of the drinking reflex, e.g., producing memory
and/or spatial orientation disorders, mobility impairment, sedation, anxiety, depression,
etc. Although in this work we did not carry out behavioral or motor studies, there are stud-
ies by other authors that have shown that fenofibrate decreases the motivation of animals to
obtain ethanol (operant self-administration) but not to self-administer sucrose [30], which
could indicate that there are no effects on memory or spatial orientation, or other effects
such as depression (depressed animals decrease their sucrose intake) or sedation. In another
study, Blednov et al. [29] reported that fenofibrate did not alter preference for saccharin,
nor motor response to novelty, reduced duration of ethanol-induced loss of righting reflex,
and increased EtOH-induced conditioned taste aversion. That is, fenofibrate per se does
not produce motor effects that could explain its effect in reducing alcohol consumption.

In addition to the decrease in relapse-type alcohol consumption, fenofibrate showed
effects in a reduction in the expression of proinflammatory cytokines and of a gene that is
induced by oxidative stress (HO-1), in the brain (Figure 2). Although the effects of PPAR-α
in mitigating ethanol-induced brain oxidative stress had not previously been explored, its
neuroprotective capabilities have been reported in distinct models [45], including traumatic
brain injury [31], transient cerebral ischemia/reperfusion [34], and Alzheimer’s disease [46].
Collino et al. [34] reported that the administration of a synthetic PPAR-α agonist (WY14643)
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reduced HO-1 expression induced by ischemia/reperfusion brain injury. Additionally,
oleoylethanolamide (a physiological PPAR-α agonist) administration in a model of chem-
ically induced degeneration of substantia nigra dopamine neurons, led to a decrease in
the number of HO-1 immunoreactive cells in the striatum when compared to untreated
animals [47]. Nevertheless, there are also several reports where the expression of HO-1
increases due to treatment with anti-inflammatory agents. It has been found that adminis-
tration of the antioxidant N-acetylcysteine to UChB rats with chronic alcohol consumption
was linked to increased HO-1 expression [48]. The discordant findings concerning the
decrease or increase in HO-1 expression following particular anti-inflammatory treatments
could be attributed to various factors, including the animal model employed, the nature
of the anti-inflammatory drug, the route and duration of administration, and the timing
of HO-1 expression evaluation post-treatment. Specifically, in the UChB rat model, the
distinction between the study conducted by Quintanilla et al. [48] and our findings lies
in the fact that N-acetylcysteine was administered over a 14-day span during the period
of alcohol consumption. In contrast, fenofibrate was administered for only 5 days during
the withdrawal period. Nonetheless, since the induction of HO-1 is mediated by ROS
production [44] it remains unclear whether the reduction in HO-1 expression is a direct
outcome of fenofibrate or a consequence of diminished oxidative stress levels in rats to
which fenofibrate was administered after chronic alcohol consumption.

Remarkably, the group that received only the antagonist GW6471 exhibited a consid-
erable rise in all assessed proinflammatory cytokines, along with an elevated expression
of HO-1, demonstrating an increase ranging from approximately 3- to 13-fold in the hip-
pocampus and NAcc (Figure 2). The substantial increases induced by the administration
of GW6471 alone (Figure 2) do not correlate with an increase in alcohol consumption of
this group during the re-access stage (Figure 1). This discrepancy likely arises because
the amount of alcohol that UChB rats can drink in 1 h has already reached its ceiling
of ~1.5–1.8 g/kg/1 h, as evidenced in other reports from our group [43]. PPAR-α is not
only activated by drugs of the fibrate family; it also responds to endogenous agonists
such as palmitoylethanolamide [49] and oleoylethanolamide [50]. Furthermore, the anti-
inflammatory and antioxidant actions of these agonists in the brain have been demon-
strated [49,51,52]. In a similar way to fibrates, it has been reported that these endogenous
agonists exert effects in reducing voluntary alcohol consumption in animals [53,54]. Thus,
it is possible that the administration of GW6471 alone produced a degree of PPAR-α inhi-
bition that prevented its activation by endogenous agonists, consequently inhibiting its
anti-inflammatory and antioxidant functions against the deleterious effects of ethanol. The
minor response within the PFC in comparison to the hippocampus and NAcc could be
attributed to the fact that PFC has been observed to display a comparative lower response
to alcohol administration [37]. In agreement, Kane et al. [55] reported that ethanol adminis-
tration fails to increase the expression of pro-inflammatory cytokines like chemokine C-C
motif ligand 2 (CCL2), IL-6, and TNF-α in the mouse cerebral cortex.

Additionally, fenofibrate showed effects in reducing oxidative stress in the hippocam-
pus, measured as the GSSG/GSH ratio. In several reports, the reduction in relapse-like
alcohol intake has been related to a decrease in cerebral oxidative stress through the ad-
ministration of N-acetylcysteine (a precursor for the cellular synthesis of glutathione) [48],
ibudilast (an anti-inflammatory phosphodiesterase inhibitor) [56], and mesenchymal stem
cells and their secreted products known for potent anti-inflammatory actions [43]. In our
study, it was found that the administration of fenofibrate produced approximately 20%
reduction in the GSSG/GSH ratio. Quintanilla et al. reported a decrease of 70% in the
GSSG/GSH ratio by N-acetylcysteine [48] and 45% due to the secretome derived from
mesenchymal stem cells [43]. The significant reduction achieved by N-acetylcysteine may
be attributed to its direct function as a precursor for the synthesis of glutathione, whereas
the effect of fenofibrate seems to be indirect. Regarding the difference obtained for secre-
tome derived from mesenchymal stem cells, this was administered in 3 doses spread over
18 days of treatment [43], a longer treatment compared to fenofibrate (5 days). Moreover,
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the mechanisms underlying these effects may not necessarily be identical. In agreement
with our results, in a model of oxidative stress induced by valproic acid, fenofibrate de-
creased 33% the levels of GSH [57]. The administration of the GW6471 antagonist, whether
in combination with fenofibrate or alone, resulted in a rise in oxidative stress levels in
the hippocampus (Figure 3). As previously discussed in relation to Figure 2, it is plausi-
ble to consider that the administration of GW6471 resulted in a substantial inhibition of
PPAR-α, preventing its activation by endogenous agonists and consequently inhibiting its
antioxidant activity against the detrimental effects of ethanol.

We also studied the properties of fenofibrate on the reactivity of microglia in the
hippocampus, as a parameter to evaluate its protective effects against ethanol-induced
neuroinflammation. We observed a tendency to increase the number of microglia with
anti-inflammatory phenotype (M2) (Figure 4) and to reduce phagocytic microglial cells
(Figure 5). In contrast to the effects observed on alcohol consumption during relapse
(Figure 1), the expression of proinflammatory cytokines (Figure 2) and oxidative stress
levels (Figure 3), the relatively short treatment period of five days with fenofibrate might
not have been sufficient to elicit a more pronounced impact on the microglial cell phenotype.
In future experiments, we plan to evaluate the effect of longer treatments with fenofibrate.
According to this idea, Quintanilla et al. [48] and Ezquer et al. [43] were able to observe
differences in microglia cells in the hippocampus of UChB rats that had consumed alcohol
and were then treated with N-acetylcysteine or mesenchymal stem cell-derived secretome,
respectively, by employing extended treatment periods.

One of the considerations that we must make as caveat of the current study is that
we did not include groups of rats that had not drunk alcohol. In several publications of
our group (please see references [43,48], as examples), we have reported that this scheme
of alcohol administration and subsequent withdrawal produces a neuroinflammation
response and oxidative stress in the brain of UChB drinking rats compared to alcohol-
naïve rats. The objective of the current work was to demonstrate that, if fenofibrate was
administered during the withdrawal stage to rats that had previously voluntarily drunk
alcohol chronically, it would decrease voluntary alcohol consumption when it was offered
again to the animals (model of relapse-type drinking), and that these effects are mediated
by PPAR-α activation. Thus, it would have been somewhat difficult to include in this
scheme a group of alcohol-naïve animals, since we would not have been able to assess
relapse in animals that had never drunk. Regarding the effect of fenofibrate on markers
of neuroinflammation and oxidative stress when administered to naïve animals, there are
some reports in the literature. For example, Barbiero et al. [58] reported that fenofibrate per
se does not produce changes in oxidative stress (GSH levels, superoxide dismutase, lipid
peroxidation) in the striatum of rats. In other studies, the administration of fenofibrate to
control rats did not produce changes in the expression of TNF-α, IL-1β, or IL-6 in the spinal
cords of mice [59] nor in inflammatory markers such as prostaglandin D2, thromboxane,
arachidonic acid, cyclooxygenase-2, and TNF-α in rat primary astrocyte cultures [60]. For
their part, Mirza and Sharma [57] reported that fenofibrate did not change the levels of GSH,
IL-6, and TNF-α in the cerebellum, brainstem, and prefrontal cortex of rats. Based on this
background, we believe that the administration of fenofibrate per se should not produce
alterations in the proinflammatory markers when administered to alcohol-naïve animals.

Another limitation that we must consider is regarding the use of only female animals
in this study. As we have stated above, UChB females, as well as females from other lines
selected to drink alcohol, present a higher consumption compared to males. However, we
cannot rule out that the response to fenofibrate could have different characteristics between
male and female UChB rats. In this sense, Blednov et al. [61] reported that male and female
mice that drank alcohol respond in different ways to treatment with PPAR agonists.

We are also aware that in these studies we do not include naive animals that have not
been administered DMSO. In a recent systematic review, Dludla et al. [62] found that DMSO
possesses essential antioxidant properties that are linked to its protective effect against
oxidative damage. Interestingly, this antioxidant effect appears to be dose-dependent
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in vivo, since lower doses (1–3 g/kg) were the most effective in blocking oxidative stress-
induced damage, mostly through a reduction in ROS, inhibition of lipid peroxidation,
improving mitochondrial function, enhancement of intracellular antioxidants, and sup-
pression of pro-inflammatory makers, in the different studies analyzed. On the other
hand, high doses of DMSO have been shown to be toxic and induce oxidative stress and
cellular damage [62]. In our studies, we administered a DMSO dose of 1 mL/kg—which is
equivalent to 1.1 g/kg—that is, in the range of the lowest doses used in the literature. The
possibility exists that the anti-inflammatory effects of DMSO might have overshadowed
the anti-inflammatory and anti-oxidative stress effects of fenofibrate; however, we do not
believe this would have been the case, as only animals receiving fenofibrate showed effects
on downregulation of proinflammatory and oxidative stress cytokine genes, as well as a
decreased GSSG/GSH ratio, while the four groups of rats indeed did receive DMSO.

5. Conclusions

Overall, our studies show that the administration of fenofibrate to rats during the
withdrawal stage after chronic ethanol consumption decreases the severity of relapse when
ethanol is offered again to the animals. This beneficial effect apparently is due to the
capacity of fenofibrate to reduce ethanol-induced neuroinflammation. This was evident in
the downregulation of proinflammatory cytokines and oxidative stress-induced genes in the
brain, decreased oxidative stress (GSSG/GSH ratio), the decreased number of phagocytic
microglial cells, and a trend to increase the number of anti-inflammatory microglia. These
protective effects collectively could contribute to a reduction in ethanol craving, which is
the main cause of relapse in patients undergoing detoxification. Our findings suggest that
incorporating fenofibrate into the post-detoxification withdrawal phase could serve as a
promising therapeutic approach to prevent or alleviate the severity of relapse. The ultimate
goal of our research is to identify a novel and effective pharmacological treatment for AUD,
based on a drug already approved for other clinical conditions. In this context, fenofibrate
has been clinically used worldwide for decades, having received approval in Europe in the
1980s, and in USA since 1994 for the treating for dyslipidemia.
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