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Abstract: Common beans (Phaseolus vulgaris L.) are widely consumed in diets all over the world
and have a significant impact on human health. Proteins, vitamins, minerals, phytochemicals, and
other micro- and macronutrients are abundant in these legumes. On the other hand, collagens, the
most important constituent of extracellular matrices, account for approximately 25–30 percent of
the overall total protein composition within the human body. Hence, the presence of amino acids
and other dietary components, including glycine, proline, and lysine, which are constituents of the
primary structure of the protein, is required for collagen formation. In this particular context, protein
quality is associated with the availability of macronutrients such as the essential amino acid lysine,
which can be acquired from meals containing beans. Lysine plays a critical role in the process of
post-translational modifications facilitated with enzymes lysyl hydroxylase and lysyl oxidase, which
are directly involved in the synthesis and maturation of collagens. Furthermore, collagen biogenesis
is influenced by the cellular redox state, which includes important minerals and bioactive chemicals
such as iron, copper, and certain quinone cofactors. This study provides a novel perspective on the
significant macro- and micronutrients present in Phaseolus vulgaris L., as well as explores the potential
application of amino acids and cofactors derived from this legume in the production of collagens and
bioavailability. The utilization of macro- and micronutrients obtained from Phaseolus vulgaris L. as a
protein source, minerals, and natural bioactive compounds could optimize the capacity to promote
the development and durability of collagen macromolecules within the human body.

Keywords: amino acids; cofactor; collagen; common beans; lysine; Phaseolus vulgaris L.; vegan diets

1. Introduction

The common bean, Phaseolus vulgaris, is often consumed because of its substantial
nutritional value [1]. This legume provides a significant source of dietary fiber, unsaturated
fatty acids, vitamins, minerals, carbohydrates, phenolic compounds, and proteins [2]. A
balanced diet that contains beans is essential in reducing the complications of noncommu-
nicable chronic diseases including diabetes and cardiovascular diseases, which are on the
rise [3–6].

Common beans contain a greater quantity of essential amino acids, including lysine,
the most abundant amino acid in dry beans, as well as tyrosine and phenylalanine [1,4,7].
In particular, the protein composition of different bean cultivars ranges from 15% to
35% [8–10]. Bean extracts that are abundant in phenolic compounds have demonstrated vari-
ous beneficial properties such as antioxidant, antiglycating, antimutagenic, anti-inflammatory,
chemopreventive, antibacterial, antiaging, and anti-diabetic activities [11,12]. It is com-
monly accepted that the presence of bioactive chemicals contributes to the beneficial effect
on human health [13,14].
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Additionally, beans are among the legumes with the highest vitamin and mineral
concentrations, making them a superior source of micronutrients [1,15]. The common bean
does include some water-soluble cofactors, such as ascorbate (vitamin C) and minerals like
copper (Cu) and iron (Fe) [16]. Vitamin C and iron are required for the conversion of lysine
to hydroxylysine and proline to hydroxyproline, which are subsequently incorporated into
collagen (Figure 1) [17]. For instance, iron and vitamin C deficiencies can alter the enzymatic
function of hydroxylase enzymes, and this dysregulation can result in collagen defects
associated with scurvy [18–20]. Because they function as cofactors for enzymatic activities
necessary to generate fiber scaffolds to create the extracellular matrix in mammalian tissues,
these micronutrients are essential for collagen synthesis [21].
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Figure 1. Formation of collagen amino acids: (A) The intracellular proline modification to hy-
droxyproline using proline hydroxylase. (B) The intracellular lysine modification to hydroxylysine
using lysyl hydroxylase. Ascorbate (vitamin C) and iron act as cofactors for the proline and lysine
hydroxylases that stabilize the tertiary structure of collagen molecules.

Collagen is the most prevalent and essential structural protein expressed in the human
body, serving as the fundamental scaffold of connective tissues such as skin, cartilage,
and bone (Figure 2) [22,23]. It plays a crucial role in establishing an appropriate tissue
architecture as a component of the extracellular matrix that surrounds cells [18,23]. Critical
aspects for controlling tissue genesis and homeostasis are provided with the structure of
extracellular tissues [24,25]. Collagen production naturally decreases with age, leading
to changes in skin elasticity, joint health, and other connective tissues. Due to its various
benefits, collagen has become a common supplement in the pharmaceutical industry to
support skin protection, joint function, and overall health [26].

According to reports from Grand View Research, the global collagen market size was
valued at USD 9.12 billion in 2022. Collagen is sourced from various animal tissues, such
as cow or fish skin, and is also produced synthetically for medical and cosmetic purposes
due to the increased demand for plant-based collagen [27]. In order to respond to the
requirements of a growing market segment characterized by a preference for vegetable-
based alternatives, such as consumers adhering to vegetarian and vegan diets, it becomes
imperative to engage in the development of innovative substances that may effectively
substitute animal-derived components, such as gelatin.

In light of these findings, this review considers the published research on the potential
effects of macro- and micronutrients derived from Phaseolus vulgaris L. on collagen biogen-
esis. We also outline how amino acids, vitamins, and minerals found in ordinary beans
can help the body produce collagen. Also, the purpose of this article is to evaluate the
current understanding of the relationship between collagen function and selected micro-
and macronutrients contained in Phaseolus vulgaris L. as collagen options for vegetarians.
There are no vegetarian sources of collagen protein. Common bean peptides offer an
opportunity for establishment of animal-free substitutes to gelatin in the food and beverage
sectors, particularly in the context of vegan dietary practices.
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vessels the strength, support, and integrity they need to function properly.

2. Health Benefits Associated with the Consumption of Common Beans

The recommendation for the consumption of legumes, including beans, defined by
the World Health Organization (WHO) corresponds to a minimum consumption of twice a
week, while in some countries, even official organizations suggest increasing consumption
to 3–4 weekly servings, considering a serving as 60–80 g of raw legumes, to ensure benefits
for human health [28]. These recommendations are equivalent to a minimum legume
consumption of 25.7–45.7 g/day.

It has been demonstrated that health benefits associated with the consumption of
legumes are diverse, due to their nutritional profile, consideration as a food high in dietary
fiber, slowly absorbed carbohydrates, and a low contribution of total lipids (Table 1) [29].
The polyphenol content present in legumes, especially in Phaseoulus vulgaris, has been
associated with anticancer activity, considering the consumption of this food as part of
the usual diet [30–32]. Phaseolus vulgaris contains a wide variety of phytochemicals with
antioxidant activity, such as phenolic acids, tannins, flavonoids, flavanols, isoflavones,
anthocyanins, and proanthocyanidins [9,33,34]. Various authors have described that the
consumption of beans is also associated with antioxidant potential, and antimutagenic
and antiproliferative activities [31,35]. Furthermore, the profile of bioactive compounds,
particularly total phenolics, individual phenolic acids, flavonoids, anthocyanins, and
tannins, in addition to a limited contribution of fatty acids (but of very good quality;
monounsaturated and polyunsaturated fatty acids) give a unique value to the bean as
a food for regular consumption with a protective effect in metabolic syndrome, at the
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endothelial level, reducing endothelial damage in the development of atherosclerosis and
inflammation, and preventing complications such as acute myocardial infarction, which
corresponds to one of the leading causes of mortality in adults worldwide [36].

A study with atherogenic mice supplemented with a fresh-ground bean protein hy-
drolysate, equivalent to approximately one daily serving of cooked beans, showed signifi-
cant decreases in plasma triglycerides and total cholesterol after 9 weeks [37]. In addition,
improvements in inflammation and endothelial dysfunction demonstrated 62% increased
endothelial nitric oxide synthase (e-NOS) and a 57% nitric oxide serum concentration, in
addition to gene expression changes in TNFα (94% reduction) and angiotensin II (79%
reduction), as compared to an atherogenic diet alone [37].

In addition, bean consumption has been associated with a significant reduction in
cardiovascular risk and mortality from cardiovascular events, due mainly to its reducing
effect on cholesterol and glycemia levels and the risk of type 2 diabetes [38–40].

At the same time, bean consumption has been shown to be associated with lower rates
of coronary heart disease through weight reduction and prevention of obesity in subjects
who consume beans as part of their usual diet. In this sense, overweight individuals who
received a Phaseolus vulgaris L. extract had a significantly greater reduction in the body
weight index, fat mass, adipose tissue thickness, and anthropometric measurements of the
waist, hip, and thigh compared to the placebo group [29,41,42]. The methanolic extract of
Phaseolus vulgaris L. has been considered relevant by its antiplatelet effect, particularly the
ability to suppress platelet secretion, using the proposed mechanism of protein kinase A
(PKA) modulation and the inhibition of AKT phosphorylation [43].

It is interesting to discuss the Phaseolus vulgaris L. agglutinin production of nitric
oxide (NO), regulated by the Ca2+/calmodulin kinase/AMPK pathway in a time- and
dose-dependent way. This process is dependent on the eNOS phosphorylation involving
the eNOS/NO/cGMP/PKG pathway [44,45]; the NO production by the beans’ agglutinin
can decrease the platelet aggregation, explaining the lower platelet activation in comparison
to agglutinin from whole grain [46].

The common bean hydrolysate has revealed numerous effects from an angiotensin-
converting enzyme inhibitor to an antimicrobial, antioxidant, and even tumor cell in-
hibitor. The bioactive potential of peptides presents in the indigestible fraction of common
beans that protect cells from oxidative stress and inhibit the angiotensin-I-converting
enzyme by interacting with its catalytic cavity independently of its antioxidant capac-
ity was documented [47]. Gomes et al. explained the hydrolysate capacity to modulate
lipid metabolism and prevent endothelial dysfunction in BALB/c mice; they also showed
hypocholesterolemic activity, helping to reduce inflammation, oxidative stress, and en-
dothelial dysfunction [37]. In addition, the use of hydrolysates of Phaseolus vulgaris shows
a promising effect in mice, from the modulation of the lipid profile to the increase in e-NOS
expression [37]; this effect can be explained with the effect of the compounds found in the
bean, upon endothelial cells. As is the case of amino acids such as lysine, leucine, serine,
and glutamine that work as modulators of NO production [48].

The common bean consumption includes multifactorial gastrointestinal physiological
mechanisms such as facilitation of nutrient transit through the digestive tract, butyric acid
production in the colon, and absorption and/or dilution of substances in the gut [49]. On
the other hand, prebiotic compounds, including dietary fiber found in beans, benefit human
health by providing protection against the development of certain diseases, potentially via
modulation in gut microbial composition [50–53].

Quercetin, a vegetal flavonoid, present in beans has been shown to have anti-inflammatory
properties and does so by inhibiting the cyclooxygenase pathway [54]. Even quercetin
has also been shown to inhibit the growth of Helicobacter pylori bacteria in in vitro
studies [54–56]. Methyl-3-(+)-catechin interferes with the formation of histamine in gas-
tric mucosa and hence produces a protective effect. Most flavonoids have anti-viral effects
against Herpes simplex virus, respiratory syncytial virus, parainfluenza virus, and adenovirus.
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Phaseolus vulgaris L. is a legume with hypoglycemic and antioxidant effects and pre-
vents kidney damage in a diabetes model. However, until now, the molecular mechanism
of this protection has not been elucidated. To evaluate the effect of bean consumption,
diabetic animals were fed for 4 weeks with food supplemented with 10% beans. Some
bean varieties decreased glucose levels in diabetic rats, as well as some markers of kidney
damage in the serum and urine. Regarding the expression of genes related to kidney
function, bean consumption increased the expression of some genes, such as threonine
protein kinase 1 (pim-1), and arginine succinate lyase (asl), and decreased the expression of
carbamoyl phosphate synthase subunit 1 (cps1) and inositol polyphosphate multikinase
(ipmk), among others. These genes could be related to the elimination of amino groups,
regulation of creatinine production, and decreased risk of metabolic acidosis. These results
suggest that the consumption of cooked common beans can be used as an alternative
to regulate kidney damage associated with diabetes [57]. In another study in diabetic
rats, bean consumption produced a hypoglycemic and hypolipidemic effect in early-stage
diabetic rats, while in diabetic animals of the advanced stage, a decrease in glucose levels
was not observed, but a decrease in markers of kidney damage such as protein and albumin
in urine was, in addition to total cholesterol, LDL cholesterol, IL-6, and TNF-α [58].

Finally, the influence that is exerted with an extract of Phaseolus vulgaris on collagen
content in streptozotocin-diabetic rats has been reported, showing a significant decrease
in the deposition of collagen in diabetic rats [5]. However, additional studies are neces-
sary to clarify the effect of Phaseolus vulgaris extracts on collagen content or amino acid
modifications in healthy models.

Table 1. The most important benefits for health from Phaseolus vulgaris.

Nutrients/System Beneficial Effect References

Beans’ nutritional profile as healthy food has high
content of dietary fiber and slowly absorbed

carbohydrates

Reduces glucose plasma levels and decreases the
type 2 diabetes risk [29,40]

Phytochemical content: Phenolic acids, tannins,
flavonoids, flavanols, isoflavones, anthocyanins,

and proanthocyanidins

Antioxidant activity, and antimutagenic and
antiproliferative activities [9,31,33–35]

Total phenolics, individual phenolic acids,
flavonoids, anthocyanins, and tannins, in addition to

a limited contribution of fatty acids

Protective effect in metabolic syndrome
In endothelium, reduces damage in the

development of atherosclerosis
and inflammation

[13,36,37]

Fatty acid metabolism
Improves the lipid profile: Reduces total

cholesterol and LDL and increases
HDL cholesterol.

[36,38]

Weight and obesity
Reduction in body weight index, fat mass,

adipose tissue thickness, and anthropometric
measurements of waist, hip, and thigh

[29,41,42]

Vascular system Antiplatelet effect, and the ability to suppress
platelet secretion [43,46]

Peptides present in the indigestible fraction of
common beans

Protect cells from oxidative stress and inhibit the
angiotensin-I-converting enzyme [47]

Hydrolysates and amino acids (lysine, leucine,
serine, and glutamine)

Increase the e-NOS expression and module of
NO production [37,48]

Dietary fiber and gut system Facilitation of nutrient transit, probiotic effect,
modulation in gut microbial composition [49–53]

Quercetin Anti-inflammatory properties [54]
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3. What Is the Protein Collagen?

The protein collagen is widely distributed throughout the human body and plays
an important function in the structural maintenance of many different types of tissue,
including skin, bones, and connective tissue [22]. The term “collagen” has its etymological
roots in the Greek language, specifically derived from the combination of two words: “kola,”
which translates to gum, and “gen,” which signifies generation [59]. The amalgamation of
these two lexical units results in the English expression “collagen.” The extracellular matrix
is comprised of this substance, which contributes to the structural integrity and support of
various tissues, including but not limited to skin, bones, tendons, ligaments, cartilage, and
blood vessels [18]. The collagen protein consists of amino acids, with glycine, proline, and
hydroxyproline being the primary constituents [60]. There are different types of collagens
found in the body; so far, there are 28 types of collagens reported that contain at least one
triple-helical domain [59]. For example, type I collagen is found in skin, bones, tendons,
ligaments, and organs (Figure 2). It provides tensile strength and is the most abundant type
of collagen in the body; type II collagen is primarily found in cartilage, providing support
and flexibility; type III is found together with type I collagen in skin, blood vessels, and
organs [61]. It helps support the structure of organs and tissues, and type IV is found in
the basement membrane, providing support for cell adhesion and filtration [23,24]. The
core of the collagenous domain contains Xaa-Yaa-Gly triplets, where glycine is present at
every third position in the sequence. This arrangement of amino acids contributes to the
strength and stability of collagen [62]. Typically, the Xaa and Yaa positions are occupied
by proline and hydroxyproline, respectively. These amino acids play a crucial role in
facilitating the establishment of interchain hydrogen bonds, thereby enhancing the stability
of the triple helix structure [60,63]. Additionally, several other amino acids, such as lysine,
arginine, glutamate, and aspartate, are involved in electrostatic interactions with type I
procollagen [22].

Lysine is known to have a significant impact on the post-translational modifications
facilitated with enzymes, namely lysyl hydroxylase and lysyl oxidase. These enzymes are
directly implicated in the synthesis and maturation of collagen [64–70]. Enzymes such
as lysyl hydroxylase and lysyl oxidase play a crucial role in various biological processes,
including the biosynthesis, secretion, and maturation of collagens. These enzymes achieve
this by post-translationally modifying lysine residues within collagen structures, which can
be found in both network and fiber forms [69]. The process of lysine modification within
the cell is facilitated with the enzyme lysyl hydroxylase, which catalyzes the hydroxylation
of specific peptidyl lysine residues, resulting in the production of hydroxylysine. Further-
more, it has been observed that the hydroxylysine residues located in the helical domain
have the potential to undergo glycosylation through the addition of galactose and glucose
residues [69,71]. Hydroxylysine is exclusively present in proteins derived from animals
and humans, primarily within collagen macromolecules. However, it is also present in
the collagen-like region of various proteins distinct from collagens [61]. Lysyl oxidases
are responsible for catalyzing enzymatic oxidative deamination on the ε-group of lysine
and hydroxylysine residues, resulting in the production of reactive aldehydic residues or
allysine [72]. Subsequently, reactive aldehydes initiate a sequence of non-enzymatic con-
densation reactions, leading to the formation of distinct covalent intra- and intermolecular
cross-links between triple-helical chains. These cross-links play a vital role in stabilizing
mature collagen, thereby contributing significantly to the biomechanical properties of the
collagen fiber (Figure 3) [73].
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Figure 3. Schematic representation of the collagen biosynthesis: Procollagen molecules convert
to trimeric propeptide fragments that form tropocollagen molecules. Tropocollagen molecules self-
assemble via the reaction of aldehyde groups and the formation of covalent bonds that cross-link
collagen molecules into fibrils and fibers.

4. Amino Acids to Support Collagen Production

Nutritionally non-essential amino acids such as glycine, proline, and hydroxyproline
can be generated with endogenous synthesis in mammals, and their contribution to the
total amino acid content in collagen is around 57% [60]. Also, it has been demonstrated that
proline and its precursor, glutamate, significantly enhance collagen synthesis in human
dermal fibroblasts [74].

Previously, the content of essential amino acids (isoleucine, leucine, lysine, methionine,
phenylalanine, threonine, valine) and some mineral elements, including potassium, cal-
cium, magnesium, iron, copper, zinc, and phosphorus, has been measured in dry beans [75].
For example, it was reported that lysine and Fe (68.9 to 152 mg per kg) are the most abun-
dant nutrients in a Chilean bean sample [75]. In addition, an amino acid content analysis
of native bean populations showed high content of lysine, arginine, and histidine (basic
amino acids). Proline was the predominant non-essential amino acid found in kidney
bean cultivars [76]. In contrast, glycine is detected in low concentrations in beans [10]. The
human body can create hydroxylysine from a dietary amino acid, lysine, an essential amino
acid nutrient that is indispensable to humans and animals and present in most protein food
sources (Figure 4) [77]. Lysine content is especially high in fish, meats, and dairy products
and higher than most other amino acids in wheat germ, legumes, nuts, quinoa, peas, and
beans [78,79]. The composition and functional properties of proteins of common dry beans
have been studied in terms of amino acid composition [80]. Aspartic and glutamic acids
were predominant, and significant quantities of essential amino acids were detected, partic-
ularly leucine, lysine, and phenylalanine. Chemically, the characterization of amino acids
from a saline and soluble protein concentrate, prepared from four common dry beans, has
adequate amino acid contents with reactive side chains, which are part of different covalent
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cross-links in collagens: (1) aspartic and glutamic acids (negatively charged); (2) lysine and
arginine (positively charged); (3) threonine, tyrosine, and cysteine (polar/hydrophilic); and
(4) leucine, isoleucine, valine, and alanine (nonpolar/hydrophobic).
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Figure 4. Micro- and macronutrients for collagen biosynthesis: Collagen production requires both
micronutrients and macronutrients. Collagen fibers are made from fibroblasts, which are shown
schematically here. Lysine, a macronutrient, is highlighted with vitamin C, copper, and iron, all of
which are micronutrients.

Lysine content is especially high in common beans (Table 2) and the lysine percentage
in the protein collagen constitutes 3 to 4% of the total amino acid composition. However,
it plays a crucial role in the formation of cross-links between collagen molecules, which
are essential for the construction of collagen fibrils and fibers. In order to facilitate the
functioning of this particular biological process, it is necessary for a subset of lysine
molecules to undergo hydroxylation, while another subset undergoes oxidation, resulting
in the formation of aldehyde compounds [81].

Table 2. Content of amino acids and inorganic cofactors in Phaseolus vulgaris L. related to the
collagen biosynthesis.

Amino Acids and Cofactors Average Amount References

Glycine 0.97 g/100 g [82,83]
Proline 0.87 g/100 g [82,83]
Lysine 1.0–2.2 g/100 g [84,85]

Iron 6.52–10.4 mg/100 g [16]
Copper 0.93–1.21 mg/100 g [16]

5. Cofactors for Collagen Biosynthesis

If the organism has all amino acid building blocks (Gly, Lys, Pro), but the number of
cofactors is low (vitamin C, iron, and copper), the enzymes to form the protein collagen in
the body may not function appropriately (PH, LH, and LOX). Micronutrients, including
vitamins and minerals, regulate several biological events and are considered essential cofac-
tors for collagen biosynthesis in humans [21]. Vitamin C and lysine, an essential amino acid,
are key micro- and macronutrients that synergistically provide healthy collagen production
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(Figure 4) [86]. In addition, vitamin C has a vital role in wound healing by increasing
procollagen and collagen [20,87]. For example, skin fibroblasts depend on vitamin C, an
essential cofactor for synthesizing collagen [86]. Vitamin C is a water-soluble, effective
antioxidant that has been shown to play an additional role in wound healing by improving
procollagen production [88,89]. In addition, vitamin C supplementation in animals resulted
in improved collagen synthesis in vivo. Besides stabilizing the collagen molecule with
hydroxylation, vitamin C also stimulates collagen mRNA production and protein synthesis
with fibroblasts [90]. Vitamin C is a cofactor for proline and lysyl hydroxylases that stabi-
lizes the collagen molecule’s tertiary structure and promotes collagen gene expression. The
dependence of the collagen hydroxylase enzymes on vitamin C has been demonstrated
in several studies with fibroblast cells in vitro, with both decreased total synthesis and
decreased cross-linking when vitamin C is absent [86,91]. Phytic acid, tannins, ascorbic
acids, thiamin, and some minerals including K, Ca, Mg, Zn, Fe, and Cu have been detected
in the common bean [8,15,80]. Copper has several functions; it is critical for iron absorption
because it is part of ceruloplasmin, a protein that oxidizes Fe2+ to Fe3+. In addition, copper
is a recognized cofactor of lysyl oxidase enzymes, which are critical for collagen matura-
tion [67]; furthermore, it is required to reduce Fe3+ back to Fe2+ to maintain the functioning
of proline and lysyl hydroxylase, which is critical for enhancing tissue thickness (Figure 2).
Therefore, both copper and iron are essential components in this process.

Polyphenols are secondary metabolites found in plants, fruits, vegetables, floral tis-
sues, stems, bark, and roots and are widely known for their antioxidative capacity [92].
Flavonoids are the primary source of phenolic compounds and are associated with impor-
tant health benefits [93]. The primary polyphenols found in beans are flavonoids, and their
chemical nature has been extensively studied [94]. The content of total polyphenols and
flavonoids has been quantified in beans and it ranges between 0.1 to 3.8 mg (mg GAE/g
DW) and 0.2 to 7.0 mg (mg RE/g DW). Moreover, flavonoids can stimulate fibrillar collagen
production in a mouse fibroblast model [95]. For example, anthocyanidins and catechin,
natural plant pigments found in fruits, flowers, and some vegetables, have been demon-
strated to stabilize collagens [25,96–98]. Also, the effect of an aqueous extract of Phaseolus
vulgaris has been related to a positive influence on the properties of tendon collagen in
streptozotocin-diabetic rats [5]. Therefore, using beans’ bioactive compounds as cofactors
for enzymatic collagen cross-linking could promote the stabilization of collagen molecules.
However, additional studies are necessary to clarify the effect of Phaseolus vulgaris extracts
on the enzymatic collagen cross-linking.

6. Collagen Sources and Production

Collagen, which is the predominant protein within the human body, plays a crucial
role in conferring structural integrity and providing support to a diverse array of tissues,
encompassing the skin, bones, tendons, and ligaments [61]. The human body has an
endogenous capacity to synthesize collagen, but it can also be acquired exogenously,
predominantly through dietary means [99]. The primary origins of collagen protein are
derived from animal tissues, particularly the skin. Collagen is found in significant quantities
inside the dermal layers of various animal species, with fish and poultry being particularly
rich sources [100]. The skin of fish, specifically, possesses a high concentration of type
I collagen, which has advantageous effects on the health of human skin. It has been
shown that the extraction of collagen from bones and bone marrow can be achieved by
means of a boiling procedure, thus rendering bone broth a widely favored reservoir of
collagen [101]. Moreover, connective tissues, namely ligaments and tendons, which are
frequently disregarded during food preparation, possess a high abundance of collagen,
rendering them highly valuable as sources of this protein. Certain fish scales, such as
those of tilapia, contain a significant amount of collagen [102]. These scales are sometimes
processed into collagen supplements. Fish collagen is known for its smaller particle size,
making it easier to digest and absorb [103].
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Collagen is a protein that is predominantly found in animal tissues, making it chal-
lenging to obtain directly from vegetarian sources. However, there are some alternatives
and plant-based options that may contribute to collagen production or provide similar
benefits for people who do not use animal products (Figure 4) [104]. Although plants do
not naturally contain collagen, specific food items can stimulate the body’s endogenous
collagen synthesis, which are denominated Collagen-Boosting Foods [105]. In this type of
products, collagen synthesis is promoted by foods rich in collagen cofactors, which are es-
sential micronutrients found in abundance in grape seeds and tomato extracts [106]. These
products promote collagen synthesis in the body or offer other health benefits. For example,
plant-based foods rich in amino acids like glycine, proline, and hydroxyproline, such as
legumes, beans, lentils, tofu, tempeh, quinoa, nuts, and seeds, support the body’s own
collagen production [107]. Vitamin C-rich foods that are essential for collagen synthesis,
including fruits and vegetables like citrus fruits, strawberries, and kiwi, among others,
can help support collagen formation. Antioxidants protect collagen from damage caused
by free radicals; thus, foods like berries rich in antioxidants can help maintain collagen
production. Additionally, collagen and cofactors are encapsulated for ease of consumption,
enabling individuals to take advantage of its benefits without making substantial dietary
adjustments [108].

In conclusion, the collagen protein and cofactors come from animal tissues, fish scales
and bones, cartilage, plant-based diets, and marine sources; however, it is essential to
understand that while these alternatives can help collagen synthesis, they may not provide
identical biological effects to collagen obtained directly from animal sources. New collagen
methods for extraction may emerge as research advances, giving people more alternatives
to boost their collagen consumption and improve their health. As research and technology
advance, more innovative solutions for producing collagen-like products from vegan
sources will be developed in the future, especially considering the growing interest in plant-
and collagen-derived protein as supplemental or replacement dietary sources because of
widespread environmental sustainability concerns [109,110].

7. Collagen Precursor Bioavailability

The term “bioavailability” describes how well a nutrient is absorbed and used by the
body after ingestion. The collagen synthesis is facilitated with foods rich in proline, glycine,
and lysine, which are amino acids found in abundance in common beans. Proteins, peptides,
minerals (e.g., copper and iron), vitamins (e.g., vitamin C), and flavonoids (catechin) that
are essential for the synthesis, secretion, and cross-linking of collagen are all found in beans.
Protein-building micro- and macronutrients found in abundance in plants, including beans,
are suitable for vegan diets in which the consumption of animal-derived foods is restricted
or nonexistent [111]. Bean proteins are typically thought to have good bioavailability.
However, the bioavailability of proteins can be influenced for a number of variables,
including cooking methods, anti-nutrients (e.g., phytates), and individual differences in
digestion and metabolism [112]. Glycine-rich peptides, for example, are short chains of
amino acids containing a significant amount of glycine. Glycine is an essential amino acid,
and its bioavailability is generally high when obtained from protein-rich sources [60].

Beans are a good source of minerals, including iron and copper. However, plant-based
sources of iron (non-heme iron) are less readily absorbed compared to heme iron found in
animal products. To enhance iron bioavailability from beans, it is recommended to integrate
foods abundant in vitamin C into the dietary regimen, such as citrus fruits like orange
that help improve non-heme iron absorption. Copper, on the other hand, is generally
well-absorbed from plant sources, and the bioavailability is not a major concern in vegan
diets, especially if the diet is balanced and varied [9].

Finally, catechin is a type of flavonoid present in cocoa beans and some types of green
beans. However, these phenolic compounds could be degraded during processing of beans.
The bioavailability of catechins can be influenced by various factors, including the food
matrix, gut microbiota, and interactions with other dietary components. Still, catechins
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from beans are generally considered to have reasonable bioavailability and a recent study
proved that the absorption efficiency of the cocoa phenolic compounds was between 87.9
and 97.4%, while in the coffee compounds, it was 100%. Thus, the high bioavailability and
a valuable antioxidant capacity of these beans were confirmed [113,114].

8. Protein and Peptide Digestion and Absorption

Proteins and peptides, including glycine-rich peptides, are large molecules made up of
amino acids (Figure 5). The process of protein digestion and absorption in the gut involves
several steps. Once the proteins are in the stomach and exposed to acidic conditions, the
enzymes break down the protein molecules into smaller peptides. Enzymes like pepsin
cleaves proteins at particular aminoacidic sites, producing fragments of peptides. Other
enzymes including trypsin, chymotrypsin, and carboxypeptidases further break down
the peptide fragments into even smaller peptides and individual amino acids in the small
intestine. Peptides, including glycine-rich peptides, are broken down into their individual
amino acids by these peptidases. The final step is the absorption of amino acids and
small peptides across the lining of the small intestine into the bloodstream [115]. Amino
acids are absorbed via active transport mechanisms, while small peptides are absorbed
through specialized peptide transporters, mainly by the SLC15A gene subfamily (peptide
transporters, PEPTs). Once absorbed, amino acids and peptides are transported through the
bloodstream to various tissues and organs in the body, where they are utilized for protein
synthesis like collagen, energy production, and other physiological functions [116].
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Figure 5. Chemical composition of different types of animal collagen that exist in the actual
market. Collagen fiber is formed with the basic unit (named triple helix). Gelatins correspond to
denatured collagen using boiling. Collagen peptides are short chains of amino acids obtained from
native collagen. Also, the figure represents amino acids glycine (red circle), lysine, hydroxylysine,
proline (green circle), and hydroxyproline (orange circle) that are components of the primary structure
of collagen molecules.
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Oligopeptides are absorbed through specialized peptide transporters placed on the
surface of the small intestine cells. These transporters are part of the SLC15 family of
transport proteins, particularly peptide transporters PEPT1 and PEPT2. The role of PEPT1
in the small intestine is to facilitate the uptake of dipeptides and tripeptides derived from
the digestion of dietary proteins, and PEPT2 in the kidney is involved in the reabsorption
and conservation of filtered peptides from the urine back into the bloodstream, preventing
excessive peptide loss [117,118].

The effects of collagen derived directly from animal sources are different from ve-
gan sources primarily due to the structural differences and amino acid composition be-
tween animal-based collagen and plant-based alternatives. The amino acid composition
of collagen from animal sources contains specific amino acids like glycine, proline, and
hydroxyproline in the exact ratios needed to form the characteristic triple-helix structure of
collagen. These amino acids are essential for providing the unique properties of collagen,
such as its strength and stability. On the other hand, plant-based sources may lack some of
these specific amino acids or may not have them in the same optimal proportions, making
it challenging to replicate the exact properties of animal-derived collagen [109]. Other
differences are that animal-based collagen typically contains types I, II, and III collagen,
which are the most abundant types in the human body, while plant-based sources generally
do not contain these specific collagen types. Regarding the absorption and bioavailability,
the animal-based collagen is usually more easily absorbed and has higher bioavailability
than plant-based alternatives. This is because animal-derived collagen is very similar to
human collagen, making it easier for the body to use it. If the manufacturing and process-
ing is considered, collagen derived from animal sources goes through specific extraction
and processing methods to maintain its structure and functionality [119]. Recreating this
complex protein structure from plant-based sources can be challenging and may result in
products with different characteristics and properties. Moreover, collagen from animal
sources often comes with other essential nutrients like minerals and vitamins that support
overall collagen synthesis and tissue health. These nutrients may not be present or may
be present in different quantities in plant-based collagen alternatives. More information
can be found in the recent review where the sources and potential cosmetic applications of
collagen are discussed [27].

In the context of Hypertension, many legumes, such as the common bean, have been
found to contain bioactive peptides that exhibit inhibitory effects against angiotensin-
converting enzyme (ACE) activity [120]. These peptides can be recovered using different
methods, including solvent extraction, enzymatic hydrolysis, or fermentation. The polypep-
tides in question include amino acids, including glycine and proline, which have the
potential to enhance collagen synthesis. Nevertheless, further investigations are required
to validate this notion.

9. Conclusions

While plant-based collagen alternatives can provide several benefits, they are not
true collagen replacements and may not have the same effects as animal-derived collagen.
However, a balanced diet rich in various nutrients and amino acids can still support healthy
skin, joint function, and overall tissue health, and contribute to the synthesis of collagen
for the human body. The consumption of common beans can help maintain collagen
production because they contain amino acids and cofactors. Common beans contain high
levels of lysine, an essential amino acid deficient in most cereals [13]. Lysine is especially
important because it is essential for building cross-links between the molecules to construct
the fibrils and fibers of collagens (necessary for healthy tissue growth). Amino acids are
key components of human and animal nutrition, as part of a protein-containing diet and as
supplemented with individual products [121]. Amino acids play a crucial role in medical
nutrition, particularly in parenteral nutrition with high purity requirements for infusion-
grade products. Thus, the ability to isolate L-Lysine from the common bean presents a
chance for animal feed and human supplementation to develop functional collagen for
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body building for vegetarians who choose to follow a plant-based diet. In addition, like
other food, legumes like common beans contain numerous bioactive compounds, such
as phenolic-rich substances that play crucial metabolic functions in humans and animals.
Additional studies are necessary to improve our understanding of earlier undefined roles
of micro- and macronutrients of Phaseolus vulgaris extracts for their beneficial effects on
collagen biosynthesis and enzymatic cross-linking. Beans have an important role in the
protein food group due to their high protein content. For both vegetarian and vegan diets,
beans play a key role. The health perks of beans, or more broadly, legumes, are many.
These include better heart health, improved digestion, and help with weight management.
They are rich in plant-based protein and one of the easiest ways to incorporate plant
protein into a vegetarian diet [122]. With the excellent nutritional profile from beans,
particularly their high quality of amino acids with lysine and leucine, they are highlighted
as an excellent source of vegetable protein, which even enhances the collagenous synthesis,
renewing cartilage, bone tissue, and skin cells, and even repairing damage structures.
Bean content includes enough quantity of fiber and antioxidants per 100 g; therefore,
this characteristic is also important to potential health in vegan people. In addition, this
feature is also important for the potential health of vegan people. On the other hand,
the contribution of micronutrients from beans, including iron, potassium, phosphorus,
calcium, and vitamins of the B, E, and K complex, helps prevent nutritional deficiencies
in vegetarian and vegan diets. In summary, beans can be an excellent alternative protein
source for vegans, and they provide various other essential nutrients with acceptable
bioavailability. However, to maximize nutrient absorption, it is essential to consume a
diverse and well-balanced diet, including other plant-based foods rich in vitamins, minerals,
and antioxidants, alongside beans.

There are some limitations regarding collagen synthesis. While it is known that certain
amino acids and cofactors are required for collagen formation, the exact mechanisms and
interactions involved in collagen synthesis are still not fully understood. Further research
is needed to uncover the complexities of this process. Another concern is the variability in
bean nutrient content. Common beans can vary in nutrient content based on factors such
as variety, growing conditions, and processing. This variability can make it challenging to
establish consistent nutritional guidelines for health professionals or consumers. Moreover,
human bodies vary in their ability to absorb and utilize nutrients, which can be influenced
by genetic factors, individual health conditions, or dietary choices. The effectiveness of
beans as a source of amino acids and cofactors for collagen synthesis may differ from
person to person. Thus, more studies on nutrigenomics should be performed [120].

The concept of using foods like common beans not only as a source of nutrients but also
as functional foods or nutraceuticals with specific health benefits is a growing trend [123].
Researchers may explore the bioactive compounds in beans that have a direct impact on
collagen and overall health. With a deeper understanding of collagen synthesis and the
role of dietary components, future trends may lead to the development of nutritional
therapies to support conditions related to collagen, such as skin health, wound healing,
and joint health.
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